T_SpeedShape.c 11.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
#include "stdio.h"
#include "stdint.h"
#include "stdbool.h"

#include "math.h"

#include "string.h"

#include "T_SpeedShape.h"


static float shortARCCalculateGen(float cur, float target, float cycleRange)
{
    float A, B;
    cycleRange = fabsf(cycleRange);
    if (!((cur >= -cycleRange) && (cur <= cycleRange) && (target >= -cycleRange) && (target <= cycleRange)))
    {
        return 0;
    }
    if (cur >= target)
    {
        A = cycleRange * 2.0f - cur + target;
        B = target - cur;
        if (A > -B)
        {
            return B;
        }
        else
        {
            return A;
        }
    }
    else
    {
        A = target - cur;
        B = - (cycleRange * 2.0f)  - cur + target;
        if (A > -B)
        {
            return B;
        }
        else
        {
            return A;
        }
    }
}


/**
 * @brief Init the Trap Curve Struct
 * @param s the object which need to be init
 * @param vel_Max_Limit the Maximum speed
 * @param acc_global the Maximum acceleration
 * @param time_Now the time Now , it Will reduce accuracy after 3 hours
 * @param cycMode select the cycle mode , Must be one of TRAP_CURVE_CYCMODE
 * @param cycRange bigger than zero is requested ; cycle Rangle( -cycle Rangle < s < cycle Rangle ). where the cycle mode is not disable , This parameter is valid
 */
void trap_Curve_Init(TRAP_CURVE_s *s, float vel_Max_Limit, float acc_global, float time_Now, int cycMode, float cycRange)
{
    if (s == NULL)
    {
        return;
    }

    memset(s, 0x00, sizeof(TRAP_CURVE_s));

    s->vel_Max_Limit = vel_Max_Limit;
    s->acc_global = acc_global;
    s->time_Now = time_Now;
    s->time_Start = time_Now;

    if (cycMode == TRAP_CURVE_CYCMODE_M1)
    {
        if (cycRange > 0)
        {
            s->cycMode = TRAP_CURVE_CYCMODE_M1;
            s->cycRange = cycRange;
            s->cycRange_2 = cycRange + cycRange ;
        }
        else
        {
            s->cycMode = TRAP_CURVE_CYCMODE_OFF;
        }
    }
    else
    {
        s->cycMode = TRAP_CURVE_CYCMODE_OFF;
    }

    s->status = TRAP_CURVE_STA_4_STOP;
    s->cycSign = TRAP_CURVE_CYCSIGN_NONE;
}

void trap_Curve_SetTarget(TRAP_CURVE_s *s, float target_Position)
{
    float acc;
    float acc_abs;
    float v_Max;
    float v_Max_abs;

    float S_Min;
    float S_Start;
    float S_Target;

    float Sp;
    float Sp_abs;
    float Vs;
    float Vs_abs;

    float Vm;
    float Vm_abs;

    float dir;

    float t1 = 0, t2 = 0, t3 = 0;
    float S1_Int = 0, S2_Int = 0, S3_Int = 0;

    /* Parameter copy */
    acc = s->acc_global;

    if (s->cycMode == TRAP_CURVE_CYCMODE_M1)
    {
        v_Max = s->vel_Max_Limit;
        S_Start = s->pos_Cur;
        S_Target = target_Position;
        Vs = s->vel_Cur;
        // Sp = S_Target - S_Start;
        Sp = shortARCCalculateGen(S_Start,target_Position,s->cycRange);
    }
    else
    {
        v_Max = s->vel_Max_Limit;
        S_Start = s->pos_Cur;
        S_Target = target_Position;
        Vs = s->vel_Cur;
        Sp = S_Target - S_Start;
    }

    acc_abs = fabsf(acc);
    Vs_abs = fabsf(Vs);
    Sp_abs = fabsf(Sp);
    v_Max_abs = fabs(v_Max);

    S_Min = 0.5f * Vs_abs * Vs_abs / acc_abs;

    if (Sp_abs == 0)
    {
        s->status = TRAP_CURVE_STA_4_STOP;
        return;
    }

    if ((Sp > 0) && (Vs >= 0))
    { // Positive direction
        /* No need to do special */
        dir = 1.0f;
    }
    else if ((Sp < 0) && (Vs <= 0))
    { // Reverse direction
        if (acc > 0)
            acc = -acc;
        if (v_Max > 0)
            v_Max = -v_Max;

        dir = -1.0f;
    }
    else
    { // moving to the opposite way , stop it first
        if (Vs <= 0)
        {
            acc = -acc;
        }
        Vm = v_Max;

        s->status = TRAP_CURVE_STA_3_BACK;
        s->t1 = Vs_abs / acc_abs; // the time need to be > 0 Always
        s->t2 = 0;
        s->t3 = 0;
        s->S1_Int = Vs * s->t1 - 0.5f * acc * s->t1 * s->t1;
        s->S2_Int = 0;
        s->S3_Int = 0;

        s->vel_Max = Vs;
        goto Apply_POINT;
    }

    Vm = v_Max;

    if ((Sp_abs < S_Min))
    { // The distance to the target is not sufficient to slow down
        s->status = TRAP_CURVE_STA_3_BACK;
        s->t1 = Vs_abs / acc_abs;
        s->t2 = 0;
        s->t3 = 0;
        s->S1_Int = 0;
        s->S2_Int = 0;
        s->S3_Int = 0;

        s->vel_Max = Vs;
    }
    else
    {
        Vm = sqrtf(0.5f * ((Vs_abs * Vs_abs) + 2 * Sp_abs * acc_abs)); // No direction
        if (Vm >= v_Max_abs)
        {              // complete trapezoidal curve
            Vm *= dir; // Key Action
            Vm_abs = fabsf(Vm);
            s->status = TRAP_CURVE_STA_1_T;
            t1 = (v_Max_abs - Vs_abs) / acc_abs;
            t2 = (Sp_abs - (2 * v_Max_abs * v_Max_abs - Vs_abs * Vs_abs) / (2 * acc_abs)) / v_Max_abs;
            t3 = v_Max_abs / acc_abs;

            S1_Int = Vs * t1 + 0.5f * acc * t1 * t1;
            S2_Int = S1_Int + v_Max * t2;
            S3_Int = S2_Int + v_Max * t3 - 0.5f * acc * t3 * t3; // Can be used for cross validation

            s->vel_Max = v_Max;
        }
        else
        {
            Vm *= dir; // key action
            Vm_abs = fabsf(Vm);
            s->status = TRAP_CURVE_STA_2_TRIANGLE;
            t1 = (Vm_abs - Vs_abs) / acc_abs;
            t2 = 0;
            t3 = Vm_abs / acc_abs;

            S1_Int = Vs * t1 + 0.5f * acc * t1 * t1;
            S2_Int = S1_Int;
            S3_Int = S1_Int + Vm * t3 - 0.5f * acc * t3 * t3; // Can be used for cross validation

            s->vel_Max = Vm;
        }
        // Update the struct value
        s->t1 = t1;
        s->t2 = t2;
        s->t3 = t3;
        s->S1_Int = S1_Int;
        s->S2_Int = S2_Int;
        s->S3_Int = S3_Int;
    }

Apply_POINT:

    s->acc_live = acc;

    s->target_Position = S_Target;

    // s->vel_Cur = Vs;
    s->vel_Orig = Vs;

    s->pos_Start = S_Start;
    // s->pos_Cur = S_Start;
    s->time_Start = s->time_Now;
    // s->time_Now = time_Now;
    s->Vm = Vm;
    s->S_Min = S_Min;
}

float trap_Curve_Update(TRAP_CURVE_s *s, float time_Now)
{
    float acc;
    float v_Max;

    float S_Min;
    float S_Start;
    float S_Target;

    float Sp;
    float Vs;
    float V_Cur;

    float Vm;

    float T1 = 0, T2 = 0, T3 = 0;
    float S1_Int = 0, S2_Int = 0, S3_Int = 0;

    float S_Cur;

    float time_Pass;

    V_Cur = s->vel_Cur;
    Vs = s->vel_Orig;
    acc = s->acc_live;
    v_Max = s->vel_Max;

    time_Pass = (time_Now - s->time_Start);

    if (s->status == TRAP_CURVE_STA_3_BACK) // Stop the device
    {
        if ((0 <= time_Pass) && (time_Pass < s->t1))
        {
            V_Cur = Vs - acc * time_Pass;
            S_Cur = Vs * time_Pass - 0.5f * acc * time_Pass * time_Pass;

            float temp = S_Cur + s->pos_Start;
            if( s->cycMode == TRAP_CURVE_CYCMODE_M1 ){
                if( (temp) > s->cycRange ){
                    S_Cur = temp - s->cycRange_2;
                }else if( (temp) < -(s->cycRange) ){
                    S_Cur = temp + s->cycRange_2;
                }else{
                    S_Cur = temp;
                }
            }else{
                S_Cur = temp;
            }
            
        }
        else
        {
            // S_Cur = s->target_Position;
            s->status = TRAP_CURVE_STA_4_STOP;
            if (fabsf(s->pos_Cur - s->target_Position) >= 0.01f)
            { // The device has not reached the target yet
                V_Cur = 0;
                s->vel_Cur = 0;
                trap_Curve_SetTarget(s, s->target_Position);
                return s->pos_Cur;
            }
        }
    }
    else if ((s->status == TRAP_CURVE_STA_1_T) || (s->status == TRAP_CURVE_STA_2_TRIANGLE))
    {
        if ((0 <= time_Pass) && (time_Pass < s->t1))
        {
            V_Cur = Vs + acc * time_Pass;
            S_Cur = Vs * time_Pass + 0.5f * acc * time_Pass * time_Pass;

            float temp = S_Cur + s->pos_Start;
            if( s->cycMode == TRAP_CURVE_CYCMODE_M1 ){
                if( (temp) > s->cycRange ){
                    S_Cur = temp - s->cycRange_2;
                }else if( (temp) < -(s->cycRange) ){
                    S_Cur = temp + s->cycRange_2;
                }else{
                    S_Cur = temp;
                }
            }else{
                S_Cur = temp;
            }
        }
        else if ((s->t1 <= time_Pass) && (time_Pass < (s->t1 + s->t2)) && (s->t2 != 0.0f))
        {
            T2 = time_Pass - s->t1;
            V_Cur = v_Max;
            S_Cur = s->S1_Int + v_Max * T2;

            float temp = S_Cur + s->pos_Start;
            if( s->cycMode == TRAP_CURVE_CYCMODE_M1 ){
                if( (temp) > s->cycRange ){
                    S_Cur = temp - s->cycRange_2;
                }else if( (temp) < -(s->cycRange) ){
                    S_Cur = temp + s->cycRange_2;
                }else{
                    S_Cur = temp;
                }
            }else{
                S_Cur = temp;
            }
        }
        else if (((s->t1 + s->t2) <= time_Pass) && (time_Pass < (s->t1 + s->t2 + s->t3)))
        {
            T3 = time_Pass - s->t1 - s->t2;
            V_Cur = v_Max - acc * T3;
            S_Cur = s->S2_Int + v_Max * T3 - 0.5f * acc * T3 * T3;

            float temp = S_Cur + s->pos_Start;
            if( s->cycMode == TRAP_CURVE_CYCMODE_M1 ){
                if( (temp) > s->cycRange ){
                    S_Cur = temp - s->cycRange_2;
                }else if( (temp) < -(s->cycRange) ){
                    S_Cur = temp + s->cycRange_2;
                }else{
                    S_Cur = temp;
                }
            }else{
                S_Cur = temp;
            }
        }
        else
        {
            S_Cur = s->target_Position;
            // Time is Out
            s->status = TRAP_CURVE_STA_4_STOP;
        }
    }

    if ((s->status == TRAP_CURVE_STA_4_STOP))
    {
        V_Cur = s->vel_Cur;
        S_Cur = s->pos_Cur;
    }

    s->vel_Cur = V_Cur;
    s->pos_Cur = S_Cur;
    s->time_Now = time_Now;
    return S_Cur;
}

// TRAP_CURVE_s set;

// FILE *fp = NULL;
// FILE *fpin = NULL;

// int main()
// {
//     // fp = fopen("data.txt", "r");
//     fpin = fopen("dataout.txt", "w+");

//     trap_Curve_Init(&set, 4.0f, 3.0f, 0);
//     set.pos_Cur = 1.0f;
//     set.vel_Cur = 3.6f;
//     trap_Curve_SetTarget(&set, -5.0f, 0);
//     float time = 0;
//     int judge[10] = {0};
//     while (1)
//     {
//         trap_Curve_Update(&set, time);
//         time += 0.01;
//         // printf("%f\n", set.pos_Cur);
//         fprintf(fpin, "%f\n", set.pos_Cur);
//         if ((time >= 5) && (judge[0] == 0))
//         {
//             trap_Curve_SetTarget(&set, -10.0f, time);
//             judge[0] = 1;
//         }
//         if ((time >= 6) && (judge[1] == 0))
//         {
//             trap_Curve_SetTarget(&set, 0.0f, time);
//             judge[1] = 1;
//         }
//         if ((time >= 8) && (judge[2] == 0))
//         {
//             trap_Curve_SetTarget(&set, -11.0f, time);
//             judge[2] = 1;
//         }
//         if ((time >= 12) && (judge[3] == 0))
//         {
//             trap_Curve_SetTarget(&set, -2.0f, time);
//             judge[3] = 1;
//         }
//         if (time >= 20)
//         {
//             break;
//         }
//     }
//     fclose(fpin);
// }