1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#include "motor.h"

#include "FOC.h"
#include "math_utils.h"
#include "MGE_Hal.h"
// #include "PID.h"

#include "string.h"

#include "MOT_Dev_Config.h"
#include "Motor_Manage.h"
#include "BMCL_ParaLoadF1.h"
#include "BMCL_Config.h"
#include "buzzer.h"


#if MOT_DEV_TARGET == STM32_TARGET_A12_F4
#include "T_SpeedShape.h"
#include "OBS_Gen.h"
#endif

// KFP kfp_vel = {0.02, 0, 0, 0, 0.005, 20.0};
KFP kfp_vel = {0};

// KFP kfp_ang = {0.02, 0, 0, 0, 0.0001, 0.01};
KFP kfp_ang = {0};

float offset_Temp;
float mge_direction_Temp;
float zeroElectricAngleOffset_Temp;

/*================== Motor Setting ===================*/
static int8_t motor_PP = 7; // 极对数
static float mot_LimitAngle_B= 90;//上限位
static float mot_LimitAngle_S = -30;//下限位

// MOTOR_IMU_DIRECTION mot_Imu_dir = MOTOR_IMU_DIRECTION_CW;
// CALIBRATION_STATE calibration_State = 0; //校准状态

/*=============== Motor Runtime Setting ==============*/
float Set_Velocity = 0.0f; // Target Vel - available in Close Vel Control
float actual_Velocity;

float Target_Angle = 0.0f; // Target Angle - available in Close Angle Control
float actual_Angle;

/*==================== PID Config ===================*/
// PID_Typedef velocity_PID; // vel PID - Simple Ver
// PID_Typedef angle_PID;    // angle PID - Simgle Ver
static GenPID_s velGenPID = {0};
static GenPID_s angGenPID = {0};


/*********************************  Motor Init ***************************************************/

void motor_InitALL(void)
{
}

// CUT##     电机属性初始化

int8_t motor_SetPP(uint8_t PP)
{
    if (PP <= 0)
    {
        return -1;
    }
    else
    {
        motor_PP = PP;
        return 0;
    }
}

int8_t motor_GetPP()
{
    return motor_PP;
}

int8_t motor_SetUpLimit(float AngLimit)
{
    if (AngLimit < 0)
    {
        return -1;
    }
    else
    {
        mot_LimitAngle_B = AngLimit;
        return 0;
    }
}

float motor_GetUpLimit()
{
    return mot_LimitAngle_B;
}


int8_t motor_SetDownLimit(float AngLimit)
{
    if (AngLimit > 0)
    {
        return -1;
    }
    else
    {
        mot_LimitAngle_S = AngLimit;
        return 0;
    }
}

float motor_GetDownLimit()
{
    return mot_LimitAngle_S;
}



// CUT##     PID初始化相关

// GenPID_CONFIG motor_angGenPID_Get()
// {
//     return angGenPID.config;
// }

// int motor_angGenPID_Get_Needle(GenPID_CONFIG *config)
// {
//     *config = velGenPID.config;
//     return 0;
// }

// int motor_angGenPID_Set(GenPID_CONFIG config)
// {
//     return GenPID_Set(&angGenPID, config);
// }

// int motor_angGenPID_Set_Needle(GenPID_CONFIG *config)
// {
//     return GenPID_Set_Needle(&angGenPID, config);
// }

// GenPID_CONFIG motor_velGenPID_Get()
// {
//     return velGenPID.config;
// }

// int motor_velGenPID_Get_Needle(GenPID_CONFIG *config)
// {
//     *config = velGenPID.config;
//     return 0;
// }

// int motor_velGenPID_Set(GenPID_CONFIG config)
// {
//     return GenPID_Set(&velGenPID, config);
// }

// int motor_velGenPID_Set_Needle(GenPID_CONFIG *config)
// {
//     return GenPID_Set_Needle(&velGenPID, config);
// }

int motor_GenPID_Get_Needle(__MOTOR_GENPID_INDEX index, GenPID_CONFIG *config)
{
    int status = 0;
    switch (index)
    {
    case __MOTOR_GENPID_INDEX_VEL:
        *config = velGenPID.config;
        break;
    case __MOTOR_GENPID_INDEX_ANG:
        *config = angGenPID.config;
        break;
    default:
        status = -1;
        break;
    }
    return status;
}

int motor_GenPID_Set_Needle(__MOTOR_GENPID_INDEX index, GenPID_CONFIG *config)
{
    int status = 0;
    switch (index)
    {
    case __MOTOR_GENPID_INDEX_VEL:
        GenPID_Set_Needle(&velGenPID, config);
        break;
    case __MOTOR_GENPID_INDEX_ANG:
        GenPID_Set_Needle(&angGenPID, config);
        break;
    default:
        status = -1;
        break;
    }
    return status;
}

// CUT##     速度角度滤波初始化相关
KFP_CONFIG motor_velKFP_Get(void)
{
    return kfp_vel.config;
}

KFP_CONFIG motor_angKFP_Get(void)
{
    return kfp_ang.config;
}

int motor_velKFP_Set(KFP_CONFIG config)
{
    return kalmanFilter_Init(&kfp_vel, config);
}

int motor_angKFP_Set(KFP_CONFIG config)
{
    return kalmanFilter_Init(&kfp_ang, config);
}


/*********************************  PID Config ***************************************************/




/*********************************  EAngle *******************************************************/

// one of the zeroElectAngle : 5.12464619
static float zeroElectricAngleOffset = 0.0f;
static float zeroElectricLoopAngleOffset = 0.0f;

float motor_getElectricalAngleLoop(void)
{
    return _normalizeAngle(motor_PP * mge_hal_GetAngle() - zeroElectricLoopAngleOffset);
}

float motor_getElectricalAngleABS(void)
{
    return _normalizeAngle(motor_PP * mge_hal_GetAbsAngle() - zeroElectricAngleOffset);
}

// float motor_getElectricalAngleABS_LP(void)
// {
//     return _normalizeAngle(motor_PP * mge_hal_GetAbsAngle_withFilter() - zeroElectricAngleOffset);
// }

float motor_getElectricalAngleABS_LP_AngIn(float angle)
{
    return _normalizeAngle(motor_PP * _normalizeAngle(angle + mge_Get_abOffset()) - zeroElectricAngleOffset);
}

void motor_Set_ZeroEAngleOffset(float offset)
{
    zeroElectricAngleOffset = offset;
}

float motor_Get_ZeroEAngleOffset()
{
    return zeroElectricAngleOffset;
}

float motor_Get_ZeroEAngleLoopOffset()
{
    return zeroElectricLoopAngleOffset;
}

void motor_Set_ZeroEAngleLoopOffset(float offset)
{
    zeroElectricLoopAngleOffset = offset;
}


/*********************************  Motor Align ***************************************************/


#if MOT_DEV_TARGET == STM32_TARGET_A12_F4 
// Motor Align
void motor_AutoCalibration()
{
    if (workMode == WORK_MODE_0||workMode == WORK_MODE_1||workMode == WORK_MODE_2)
    {
        
        do
        {
            mode_Switch(0xBB, WORK_MODE_3);
            osDelay(1);
        } while (operationResult == 0);
        operationResult = 0;

        do
        {
            mode_Switch(0xCC, WORK_MODE_3);
            osDelay(1);
        } while (operationResult == 0);
        operationResult = 0;

        workModePer = workMode;
        workMode = WORK_MODE_3;

        // motor_Align_Sensor(&imu_AHRS_result);

        // do
        // {
        //     motor_Calibration_Start(0xBB, PROTOCOL_F_SROUTE_0X51_SR_0X1A); // 开始roll电机校准
        //     osDelay(1);
        // } while (operationResult == 0);
        // operationResult = 0;

        // do
        // {
        //     motor_Calibration_Status_Checks(0xBB, PROTOCOL_F_SROUTE_0X52_SR_0X2A);
        //     osDelay(2);
        // } while (CalibrationCmplete == 0);
        // // 判断通用回复正常并且是否校准完成
        // generalResult = 0;
        // CalibrationCmplete = 0;

        // do
        // {
        //     motor_Calibration_Start(0xCC, PROTOCOL_F_SROUTE_0X51_SR_0X1A); // 开始yaw电机校准
        //     osDelay(1);
        // } while (operationResult == 0);
        // operationResult = 0;

    }
    else
    {
        do
        {
            mode_Switch(0xBB, WORK_MODE_1);
            osDelay(1);
        } while (operationResult == 0);
        operationResult = 0;

        do
        {
            mode_Switch(0xCC, WORK_MODE_1);
            osDelay(1);
        } while (operationResult == 0);
        operationResult = 0;

        workMode = workModePer;
    }

        // do
        // {
        //     motor_Calibration_Status_Checks(0XBB, PROTOCOL_F_SROUTE_0X02_SR_0X11);
        //     HAL_Delay(500);
        // } while (generalResult == 0 || Gen_dataResult.rawdata_8t[2] != __PARAMGE_DEF_MOT_CALI_STA_S1); // 判断通用回复正常并且是否校准完成
        // generalResult = 0;
        // Gen_dataResult.rawdata_8t[2] = __PARAMGE_DEF_MOT_CALI_STA_BAD;

        // do
        // {
        //     motor_Calibration_Status_Checks(0xCC, PROTOCOL_F_SROUTE_0X02_SR_0X11);
        //     osDelay(1);
        // } while (generalResult == 0 || Gen_dataResult.rawdata_8t[2] != __PARAMGE_DEF_MOT_CALI_STA_S1); // 判断通用回复正常并且是否校准完成
        // generalResult = 0;
        // Gen_dataResult.rawdata_8t[2] = __PARAMGE_DEF_MOT_CALI_STA_BAD;

        // if (workMode == WORK_MODE_1)
        // {
        //     do
        //     {
        //         mode_Switch(0xBB, WORK_MODE_3);
        //         osDelay(1);
        //     } while (operationResult == 0);
        //     operationResult = 0;

        //     do
        //     {
        //         mode_Switch(0xCC, WORK_MODE_3);
        //         osDelay(1);
        //     } while (operationResult == 0);
        //     operationResult = 0;

        //     workMode = WORK_MODE_3;
        // }
        // else
        // {
        //     do
        //     {
        //         mode_Switch(0xBB, WORK_MODE_1);
        //         osDelay(1);
        //     } while (operationResult == 0);
        //     operationResult = 0;

        //     do
        //     {
        //         mode_Switch(0xCC, WORK_MODE_1);
        //         osDelay(1);
        //     } while (operationResult == 0);
        //     operationResult = 0;

        //     workMode = WORK_MODE_1;
        // }
    }

void gimbal_Axisalign(void)
{
    if (workMode != WORK_MODE_4)
    {
        workModePer = workMode;
        workMode = WORK_MODE_4;
    }
    else
    {
        pitchCenterOffset = gen_OBS.vaule[7] / 57.2957795130f;
        rollCenterOffset += gen_OBS.vaule[5] / 57.2957795130f;
        yawCenterOffset += gen_OBS.vaule[6] / 57.2957795130f;

        BMCL_mot_Calibration = BMCL_CONFIG_MOT_CAL_STA_CALS2;
        mge_Set_abOffset(mge_Get_abOffset()+pitchCenterOffset);
        BMCL_PL_WriteAll2ParaMge();
        paraMge_SaveALL();

        workMode = workModePer;
    }

}


void gimbal_Horizontalalign(void)//云台水平对齐
{
    //进入自稳模式,可手动调整外框各电机角度至中间位置,同时如果imu位置不准时,\
     可手动将imu调整到水平位置(改变目标姿态即可)
    // if (workMode == WORK_MODE_1)
    // {
    //     do
    //     {
    //         mode_Switch(0xBB, WORK_MODE_3);
    //         osDelay(1);
    //     } while (operationResult == 0);
    //     operationResult = 0;

    //     do
    //     {
    //         mode_Switch(0xCC, WORK_MODE_3);
    //         osDelay(1);
    //     } while (operationResult == 0);
    //     operationResult = 0;

    //     workMode = WORK_MODE_3;

    //     osDelay(500);

    pitchCenterOffset += gen_OBS.vaule[7] / 57.2957795130f;
    rollCenterOffset += gen_OBS.vaule[5] / 57.2957795130f;

    // 手动将imu调整到水平位置(改变目标姿态即可)
    osDelay(1);

    yawCenterOffset += gen_OBS.vaule[6] / 57.2957795130f;

    // }
    // else
    // {
    //     do
    //     {
    //         mode_Switch(0xBB, WORK_MODE_1);
    //         osDelay(1);
    //     } while (operationResult == 0);
    //     operationResult = 0;

    //     do
    //     {
    //         mode_Switch(0xCC, WORK_MODE_1);
    //         osDelay(1);
    //     } while (operationResult == 0);
    //     operationResult = 0;

    //     workMode = WORK_MODE_1;
    // }
}

#endif


uint8_t motor_start_SelfTest(void)
{
    int i;
    float Uq;
    float angle;
    float mid_angle, end_angle;
    float moved;

    int stop_Count = 0;
    float pre_Angle, cur_Angle;
    float Up_Angle, Down_Angle;
    // float imu_Up_Angle, imu_Down_Angle;

//    HAL_Delay(500);

    for (i = 0; i <= 1000; i++)//缓存作用
    {
        Uq = 4*i / 1000.0;
        setPhaseVoltage(Uq, 0, _3PI_2);
        HAL_Delay(1);
    }
    /*============= Sensor Zero Position Move  =========*/
    /* Obtain the operating range of the motor and offset the zero position of the sensor to an inaccessible place */

    int checkTime = 0;

    // Up moving
    pre_Angle = mge_hal_GetAngle();
    for (i = 0; i <= 2000; i++)
    {
        angle = _3PI_2 + _2PI * motor_PP * i / 2000.0;
        setPhaseVoltage(3.0f, 0, angle);
        cur_Angle = mge_hal_GetAngle();
        if (checkTime > 5)
        {
            if (fabsf(cur_Angle - pre_Angle) < 0.005f)
            {
                stop_Count++;
            }
            else
            {
                stop_Count = 0;
            }
            if (stop_Count > 10)
            {
                break;
            }
            pre_Angle = cur_Angle;
            checkTime = 0;
        }
        checkTime++;
        delay_us(700);
    }
    HAL_Delay(100);//延时以保证读取准确
    Up_Angle = mge_hal_GetAngle();
    // imu_Up_Angle = imu_Angle_Process(&current_axis_data);

    stop_Count = 0;
    checkTime = 0;

    // Pre Moving
    for (i = 1000; i >= 0; i--)
    {
        angle = _3PI_2 + _2PI * i / 1000.0;
        setPhaseVoltage(3.0f, 0, angle);
        delay_us(700);
    }
    // Down moving
    pre_Angle = mge_hal_GetAngle();
		
		 // Down moving
    pre_Angle = mge_hal_GetAngle();
    for (i = 2000; i >= 0; i--)
    {
        angle = _3PI_2 + _2PI * motor_PP * i / 2000.0;
        setPhaseVoltage(3.0f, 0, angle);
        cur_Angle = mge_hal_GetAngle();
        if (checkTime > 5)
        {
            if (fabsf(cur_Angle - pre_Angle) < 0.005f)
            {
                stop_Count++;
            }
            else
            {
                stop_Count = 0;
            }
            if (stop_Count > 10)
            {
                break;
            }
            pre_Angle = cur_Angle;
            checkTime = 0;
        }
        checkTime++;
        delay_us(700);
    }
    HAL_Delay(100);//延时以保证读取准确
    Down_Angle = mge_hal_GetAngle();
    // imu_Down_Angle = imu_Angle_Process(&current_axis_data);
    
    moved = Up_Angle - Down_Angle;
    // imu_moved = imu_Up_Angle - imu_Down_Angle;
		
		for (i = 0; i <= 2000; i++)
    {
        // Uq = 5*i / 1000.0;
        angle = _3PI_2 + _2PI * 2* i / 2000.0;
        setPhaseVoltage(3.0f, 0, angle);
        delay_us(700);
    }

    if (fabs(moved) < _PI) // 未达到正常限位范围
    {
			return 1; // 开机自检异常
    }
		return 0;
}



/*********************************  Motor Align ***************************************************/


__PARAMGE_DEF_MOT_CALI_STA motor_Align_Sensor(void)
{
#if MOTOR_DEBUG_SENSOR_ALIGN == PROJECT_CONFIG_ENABLE
    int i;
    float Uq;
    float angle;
    float mid_angle, end_angle;
    float moved;

    int stop_Count = 0;
    float pre_Angle, cur_Angle;
    float Up_Angle, Down_Angle;
    // float imu_Up_Angle, imu_Down_Angle;

    HAL_Delay(500);

    motor_Calibration_Status = __PARAMGE_DEF_MOT_CALI_STA_CALIBRATING;//校准中

    for (i = 0; i <= 1000; i++)//缓存作用
    {
        Uq = 4*i / 1000.0;
        setPhaseVoltage(Uq, 0, _3PI_2);
        if (motor_Calibration_Status == 0)
        {
            goto motor_Calibration_Jump;
        }
        HAL_Delay(1);
    }
    /*============= Sensor Zero Position Move  =========*/
    /* Obtain the operating range of the motor and offset the zero position of the sensor to an inaccessible place */

    int checkTime = 0;

    // Up moving
    pre_Angle = mge_hal_GetAngle();
    for (i = 0; i <= 2000; i++)
    {
        angle = _3PI_2 + _2PI * motor_PP * i / 2000.0;
        setPhaseVoltage(3.0f, 0, angle);
        cur_Angle = mge_hal_GetAngle();
        if (checkTime > 5)
        {
            if (fabsf(cur_Angle - pre_Angle) < 0.005f)
            {
                stop_Count++;
            }
            else
            {
                stop_Count = 0;
            }
            if (stop_Count > 10)
            {
                break;
            }
            pre_Angle = cur_Angle;
            checkTime = 0;
        }
        checkTime++;

        if (motor_Calibration_Status == 0)
        {
            goto motor_Calibration_Jump;
        }

        HAL_Delay(1);
    }
    HAL_Delay(100);//延时以保证读取准确
    Up_Angle = mge_hal_GetAngle();
    // imu_Up_Angle = imu_Angle_Process(&current_axis_data);

    stop_Count = 0;
    checkTime = 0;

    // Pre Moving
    for (i = 1000; i >= 0; i--)
    {
        angle = _3PI_2 + _2PI * i / 1000.0;
        setPhaseVoltage(3.0f, 0, angle);

        if (motor_Calibration_Status == 0)
        {
            goto motor_Calibration_Jump;
        }

        HAL_Delay(1);
    }

    // Down moving
    pre_Angle = mge_hal_GetAngle();
    for (i = 2000; i >= 0; i--)
    {
        angle = _3PI_2 + _2PI * motor_PP * i / 2000.0;
        setPhaseVoltage(3.0f, 0, angle);
        cur_Angle = mge_hal_GetAngle();
        if (checkTime > 5)
        {
            if (fabsf(cur_Angle - pre_Angle) < 0.005f)
            {
                stop_Count++;
            }
            else
            {
                stop_Count = 0;
            }
            if (stop_Count > 10)
            {
                break;
            }
            pre_Angle = cur_Angle;
            checkTime = 0;
        }
        checkTime++;

        if (motor_Calibration_Status == 0)
        {
            goto motor_Calibration_Jump;
        }

        HAL_Delay(1);
    }
    HAL_Delay(100);//延时以保证读取准确
    Down_Angle = mge_hal_GetAngle();
    // imu_Down_Angle = imu_Angle_Process(&current_axis_data);
    
    moved = Up_Angle - Down_Angle;
    // imu_moved = imu_Up_Angle - imu_Down_Angle;

    if (fabs(moved) < _PI) // 未达到正常限位范围
    {
        motor_Calibration_Status = __PARAMGE_DEF_MOT_CALI_STA_ODD; // 基本校准异常
        return motor_Calibration_Status;
    }

    // //电机旋转方向与imu方向判断
    // if(moved*imu_moved>0){
    //     mot_Imu_dir = MOTOR_IMU_DIRECTION_CW;
    // } else{
    //     mot_Imu_dir = MOTOR_IMU_DIRECTION_CCW;
    // }

    offset_Temp = mge_hal_calculateArcMidpointAngleBTP(Up_Angle, Down_Angle);


       /*============= Motor electrical and  direction  calibration  =========*/

    // Pre Moving
    for (i = 0; i <= 1000; i++)
    {
        // Uq = 5*i / 1000.0;
        angle = _3PI_2 + _2PI * i / 1000.0;
        setPhaseVoltage(5.0f, 0, angle);

        if (motor_Calibration_Status == 0)
        {
            goto motor_Calibration_Jump;
        }

        HAL_Delay(1);
    }

    for (i = 0; i <= 1000; i++)
    {
        angle = _3PI_2 + _2PI * i / 1000.0;
        setPhaseVoltage(5.0f, 0, angle);

        if (motor_Calibration_Status == 0)
        {
            goto motor_Calibration_Jump;
        }

        HAL_Delay(1);
    }

    for (i = 0; i <= 1000; i++)
    {
        angle = _3PI_2 + _2PI * i / 1000.0;
        setPhaseVoltage(3.0f, 0, angle);

        if (motor_Calibration_Status == 0)
        {
            goto motor_Calibration_Jump;
        }

        HAL_Delay(1);
    }
    HAL_Delay(100);//延时以保证读取准确
    mid_angle = mge_hal_GetAngle();

    for (i = 1000; i >= 0; i--)
    {
        angle = _3PI_2 + _2PI * i / 1000.0;
        setPhaseVoltage(3.0f, 0, angle);

        if (motor_Calibration_Status == 0)
        {
            goto motor_Calibration_Jump;
        }

        HAL_Delay(1);
    }
    HAL_Delay(100);//延时以保证读取准确
    end_angle = mge_hal_GetAngle();

    moved = fabs(mid_angle - end_angle);
    if ((mid_angle == end_angle) || (moved < 0.5)) // 相等或者小于一个电角度周期角度
    {
        motor_Calibration_Status = __PARAMGE_DEF_MOT_CALI_STA_ODD; // 基本校准异常
        return motor_Calibration_Status;
    }
    else if (mid_angle < end_angle)
    {
        mge_direction_Temp = MGE_DIRECTION_CCW;
    }
    else
    {
        mge_direction_Temp = MGE_DIRECTION_CW;
    }
    // 电角度零位标定
    setPhaseVoltage(5.0f, 0.0f, _3PI_2);
    HAL_Delay(1000);

    zeroElectricAngleOffset_Temp = _normalizeAngle(mge_direction_Temp * motor_PP * mge_hal_GetAngle());

    if (mge_direction_Temp == MGE_DIRECTION_CCW)
    {
        offset_Temp = -offset_Temp;
    }

    motor_Calibration_Status = __PARAMGE_DEF_MOT_CALI_STA_GOOD; // 基本校准已完成
    setPhaseVoltage(0.0f, 0.0f, _3PI_2);
    return motor_Calibration_Status;

    motor_Calibration_Jump:
    motor_Calibration_Stop = 1;
    return motor_Calibration_Status;

#else

// #if MOTOR_BOARD_SELECT_AXIS == MOTOR_HOLDER_AXIS_ROLL
//     mge_direction = CW;
//     mge_set_abOffset(0.787124157f);
//     zeroElectricAngleOffset = 4.4036727f;
// #endif

// #if MOTOR_BOARD_SELECT_AXIS == MOTOR_HOLDER_AXIS_YAW
//     mge_direction = CCW;
//     mge_set_abOffset(5.60535765f);
//     zeroElectricAngleOffset = 2.32839298f;
// #endif

#endif
}


/*********************************  Openloop Control  ********************************************/

// 开环运行测试1,模拟电角度
void motor_OpenVelocity1(float target)
{
    const float voltageLimit = 1.0f;    // 开环电压限制
    static float _estimateAngle = 0.0f; // 开环虚拟机械角度
    const float deltaT = 0.002f;        // 开环运行时间间隔
    _estimateAngle = _normalizeAngle((_estimateAngle + target * deltaT) * 7);
    setPhaseVoltage(voltageLimit, 0.0f, _estimateAngle);
}

// 开环速度控制测试,使用MT6701反馈的电角度
void motor_OpenVelocity2(float Uq)
{
    float el_Angle = motor_getElectricalAngleLoop();
    setPhaseVoltage(Uq, 0.0f, el_Angle);
}

/**********************************  Closeloop Control SimpleVer *********************************/



/*======================================== Close Control With GenPID ===========================*/


float CACG_CurAngle = 0;
static float CACG_CurVelocity = 0;
// LowPassFSTD_s velLP_Config = {0};

// void velLP_Configuration(void)
// {
//     LowPassFilterSTD_Init(&velLP_Config, 0.0001f);
// }

#if MOT_DEV_TARGET == STM32_TARGET_A12_F4

extern TRAP_CURVE_s pitchANGPlan;
extern float pitchANGPlan_Time;
extern TimeRec_s pitchANGPlan_TimeS;

void MOT_Pitch_AngleControl_WithTCurve_GenPID(state_t *imu_AHRS_result)
{
    static float set_Velocity = 0;
    CACG_CurAngle = mge_hal_GetAbsAngle_withFilter();
    CACG_CurVelocity = mge_hal_GetVel_ExtAngle(CACG_CurAngle);

    // Vel Filter
    //  CACG_CurVelocity = LowPassFilterSTD_Process(&velLP_Config , CACG_CurVelocity );
    float CACG_CurVelocity_KFP = kalmanFilter(&kfp_vel, CACG_CurVelocity);

    // Angle PID Process
    if (imu_AHRS_result != NULL)
    {
        pitchANGPlan_Time += TimeFlash(&pitchANGPlan_TimeS);
        float angle_traget = trap_Curve_Update(&pitchANGPlan, pitchANGPlan_Time);
        set_Velocity = GenPID_ProcessSTD(&angGenPID, angle_traget / 57.2957795130f, imu_AHRS_result->attitude.pitch / 57.2957795130f, &angGenPID_obs); // 角度换PID控制,输出转速
        // set_Velocity = GenPID_Process(&angGenPID, angleIMU_traget, imu_AHRS_result->attitude.pitch, &angGenPID_obs);
    }

    // Vel PID Process
    //  float Uq = GenPID_ProcessSTD_LPIn(&velGenPID,set_Velocity,CACG_CurVelocity,CACG_CurVelocity_KFP,&velGenPID_obs);
    float Uq = mot_Imu_dir*GenPID_ProcessSTD(&velGenPID, set_Velocity, CACG_CurVelocity_KFP, &velGenPID_obs);

    float el_Angle = motor_getElectricalAngleABS_LP();

    setPhaseVoltage(Uq, 0.0f, el_Angle);

    /*############## Observation Add ############*/
    motor_obs.actual_Angle = CACG_CurAngle;
    motor_obs.actual_Velocity = CACG_CurVelocity;
    motor_obs.actual_Velocity_KPF = CACG_CurVelocity_KFP;
    motor_obs.Set_Angle = Set_Angle;
    motor_obs.Set_Velocity = set_Velocity;
    motor_obs.el_Angle = el_Angle;
    motor_obs.Uq = Uq;
}
#endif

#if MOT_DEV_TARGET == STM32_TARGET_A2_F1

void MOT_YandR_VelControl_Direct_GenPID_ErrIn(float err)
{
    static float set_Velocity = 0;

    // #if MOTOR_BOARD_DEBUG_OR_TEST == PROJECT_CONFIG_ENABLE

    // #endif
    set_Velocity = err;

    CACG_CurAngle = mge_hal_GetAbsAngle_withFilter();
    CACG_CurVelocity = mge_hal_GetVel_ExtAngle(CACG_CurAngle);

    // Vel Filter
    //  CACG_CurVelocity = LowPassFilterSTD_Process(&velLP_Config , CACG_CurVelocity );
    float CACG_CurVelocity_KFP = kalmanFilter(&kfp_vel, CACG_CurVelocity);

    // Vel PID Process
    //  float Uq = GenPID_ProcessSTD_LPIn(&velGenPID,set_Velocity,CACG_CurVelocity,CACG_CurVelocity_KFP,&velGenPID_obs);
    float Uq = GenPID_ProcessSTD(&velGenPID, set_Velocity, CACG_CurVelocity_KFP, &velGenPID_obs);

    float el_Angle = motor_getElectricalAngleABS_LP_AngIn(CACG_CurAngle);

    setPhaseVoltage(Uq, 0.0f, el_Angle);

    /*############## Observation Add ############*/
    motor_obs.actual_Angle = CACG_CurAngle;
    motor_obs.actual_Velocity = CACG_CurVelocity;
    motor_obs.actual_Velocity_KPF = CACG_CurVelocity_KFP;
    motor_obs.Set_Angle = Target_Angle;
    motor_obs.Set_Velocity = set_Velocity;
    motor_obs.el_Angle = el_Angle;
    motor_obs.Uq = Uq;

    // motor_obs.errPIDOut = err;
    // motor_obs.errPIDOut1 = err1;
    motor_obs.Set_Velocity = set_Velocity;
}

#endif


//! 注意,该函数使用了电机所在轴的宏判断,如需使用,则需要修改
void close_Angle_Control_GenPID(float Target_Angle)//目标角度闭环控制
{
    float CACG_CurAngle_KFP;
    CACG_CurAngle = mge_hal_GetAbsAngle_withFilter();
    CACG_CurAngle_KFP = kalmanFilter(&kfp_ang, CACG_CurAngle);
    CACG_CurVelocity = mge_hal_GetVel_ExtAngle(CACG_CurAngle_KFP); // get vel
    // Vel Filter
    // CACG_CurVelocity = LowPassFilterSTD_Process(&velLP_Config, CACG_CurVelocity);
    float CACG_CurVelocity_KFP = kalmanFilter(&kfp_vel, CACG_CurVelocity);

    // Angle PID Process
    float set_Velocity = GenPID_ProcessSTD(&angGenPID, Target_Angle, CACG_CurAngle_KFP, &angGenPID_obs); // 角度换PID控制,输出转速

    // Vel PID Process
    float Uq = GenPID_ProcessSTD_LPIn(&velGenPID, set_Velocity, CACG_CurVelocity, CACG_CurVelocity_KFP, &velGenPID_obs);

    float el_Angle = motor_getElectricalAngleABS_LP_AngIn(CACG_CurAngle_KFP);

    setPhaseVoltage(Uq, Ud, el_Angle);

    /*############## Observation Add ############*/
    motor_obs.actual_Angle = CACG_CurAngle_KFP;
    motor_obs.actual_Velocity = CACG_CurVelocity;
    motor_obs.actual_Velocity_KPF = CACG_CurVelocity_KFP;
    motor_obs.Set_Angle = Target_Angle;
    motor_obs.Set_Velocity = set_Velocity;
    motor_obs.el_Angle = el_Angle;
    motor_obs.Uq = Uq;
}