fdb_kvdb.c 65.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
/*
 * Copyright (c) 2020, Armink, <armink.ztl@gmail.com>
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief KVDB feature.
 *
 * Key-Value Database feature implement source file.
 */

#include <inttypes.h>
#include <string.h>
#include <flashdb.h>
#include <fdb_low_lvl.h>

#define FDB_LOG_TAG "[kv]"
/* rewrite log prefix */
#undef  FDB_LOG_PREFIX2
#define FDB_LOG_PREFIX2()                         FDB_PRINT("[%s][%s] ", db_name(db), _fdb_db_path((fdb_db_t)db))

#if defined(FDB_USING_KVDB)

#ifndef FDB_WRITE_GRAN
#error "Please configure flash write granularity (in fdb_cfg.h)"
#endif

#if FDB_WRITE_GRAN != 1 && FDB_WRITE_GRAN != 8 && FDB_WRITE_GRAN != 32 && FDB_WRITE_GRAN != 64 && FDB_WRITE_GRAN != 128
#error "the write gran can be only setting as 1, 8, 32, 64 and 128"
#endif

/* magic word(`F`, `D`, `B`, `1`) */
#define SECTOR_MAGIC_WORD                        0x30424446
/* magic word(`K`, `V`, `0`, `0`) */
#define KV_MAGIC_WORD                            0x3030564B

/* the sector remain threshold before full status */
#ifndef FDB_SEC_REMAIN_THRESHOLD
#define FDB_SEC_REMAIN_THRESHOLD                  (KV_HDR_DATA_SIZE + FDB_KV_NAME_MAX)
#endif

/* the total remain empty sector threshold before GC */
#ifndef FDB_GC_EMPTY_SEC_THRESHOLD
#define FDB_GC_EMPTY_SEC_THRESHOLD                1
#endif

/* the string KV value buffer size for legacy fdb_get_kv(db, ) function */
#ifndef FDB_STR_KV_VALUE_MAX_SIZE
#define FDB_STR_KV_VALUE_MAX_SIZE                128
#endif

#if FDB_KV_CACHE_TABLE_SIZE > 0xFFFF
#error "The KV cache table size must less than 0xFFFF"
#endif

/* the sector is not combined value */
#if (FDB_BYTE_ERASED  == 0xFF)
#define SECTOR_NOT_COMBINED                      0xFFFFFFFF
#define SECTOR_COMBINED                          0x00000000
#else
#define SECTOR_NOT_COMBINED                      0x00000000
#define SECTOR_COMBINED                          0xFFFFFFFF
#endif
/* the next address is get failed */
#define FAILED_ADDR                              0xFFFFFFFF

#define KV_STATUS_TABLE_SIZE                     FDB_STATUS_TABLE_SIZE(FDB_KV_STATUS_NUM)

#define SECTOR_NUM                               (db_max_size(db) / db_sec_size(db))

#define SECTOR_HDR_DATA_SIZE                     (FDB_WG_ALIGN(sizeof(struct sector_hdr_data)))
#define SECTOR_STORE_OFFSET                      ((unsigned long)(&((struct sector_hdr_data *)0)->status_table.store))
#define SECTOR_DIRTY_OFFSET                      ((unsigned long)(&((struct sector_hdr_data *)0)->status_table.dirty))
#define SECTOR_MAGIC_OFFSET                      ((unsigned long)(&((struct sector_hdr_data *)0)->magic))
#define KV_HDR_DATA_SIZE                         (FDB_WG_ALIGN(sizeof(struct kv_hdr_data)))
#define KV_MAGIC_OFFSET                          ((unsigned long)(&((struct kv_hdr_data *)0)->magic))
#define KV_LEN_OFFSET                            ((unsigned long)(&((struct kv_hdr_data *)0)->len))
#define KV_NAME_LEN_OFFSET                       ((unsigned long)(&((struct kv_hdr_data *)0)->name_len))

#define db_name(db)                              (((fdb_db_t)db)->name)
#define db_init_ok(db)                           (((fdb_db_t)db)->init_ok)
#define db_sec_size(db)                          (((fdb_db_t)db)->sec_size)
#define db_max_size(db)                          (((fdb_db_t)db)->max_size)
#define db_oldest_addr(db)                       (((fdb_db_t)db)->oldest_addr)

#define db_lock(db)                                                            \
    do {                                                                       \
        if (((fdb_db_t)db)->lock) ((fdb_db_t)db)->lock((fdb_db_t)db);          \
    } while(0);

#define db_unlock(db)                                                          \
    do {                                                                       \
        if (((fdb_db_t)db)->unlock) ((fdb_db_t)db)->unlock((fdb_db_t)db);      \
    } while(0);

#define VER_NUM_KV_NAME                         "__ver_num__"

struct sector_hdr_data {
    struct {
        uint8_t store[FDB_STORE_STATUS_TABLE_SIZE];  /**< sector store status @see fdb_sector_store_status_t */
        uint8_t dirty[FDB_DIRTY_STATUS_TABLE_SIZE];  /**< sector dirty status @see fdb_sector_dirty_status_t */
    } status_table;
    uint32_t magic;                              /**< magic word(`E`, `F`, `4`, `0`) */
    uint32_t combined;                           /**< the combined next sector number, default: not combined */
    uint32_t reserved;
#if (FDB_WRITE_GRAN == 64) || (FDB_WRITE_GRAN == 128)
    uint8_t padding[4];                          /**< align padding for 64bit and 128bit write granularity */
#endif
};
typedef struct sector_hdr_data *sector_hdr_data_t;

struct kv_hdr_data {
    uint8_t status_table[KV_STATUS_TABLE_SIZE];  /**< KV node status, @see fdb_kv_status_t */
    uint32_t magic;                              /**< magic word(`K`, `V`, `0`, `0`) */
    uint32_t len;                                /**< KV node total length (header + name + value), must align by FDB_WRITE_GRAN */
    uint32_t crc32;                              /**< KV node crc32(name_len + data_len + name + value) */
    uint8_t name_len;                            /**< name length */
    uint32_t value_len;                          /**< value length */
#if (FDB_WRITE_GRAN == 64)
    uint8_t padding[4];                          /**< align padding for 64bit write granularity */
#endif
#if (FDB_WRITE_GRAN == 128)
    uint8_t padding[12];                         /**< align padding for 128bit write granularity */
#endif
};
typedef struct kv_hdr_data *kv_hdr_data_t;

struct alloc_kv_cb_args {
    fdb_kvdb_t db;
    size_t kv_size;
    uint32_t *empty_kv;
};

struct gc_cb_args {
    fdb_kvdb_t db;
    size_t cur_free_size;
    size_t setting_free_size;
    uint32_t traversed_len;
};

static void gc_collect(fdb_kvdb_t db);
static void gc_collect_by_free_size(fdb_kvdb_t db, size_t free_size);

#ifdef FDB_KV_USING_CACHE
static void update_sector_cache(fdb_kvdb_t db, kv_sec_info_t sector)
{
    size_t i, empty_index = FDB_SECTOR_CACHE_TABLE_SIZE;

    for (i = 0; i < FDB_SECTOR_CACHE_TABLE_SIZE; i++) {
        /* update the sector empty_addr in cache */
        if (db->sector_cache_table[i].addr == sector->addr) {
            if (sector->check_ok) {
                memcpy(&db->sector_cache_table[i], sector, sizeof(struct kvdb_sec_info));
            } else {
                db->sector_cache_table[i].addr = FDB_DATA_UNUSED;
            }
            return;
        } else if (db->sector_cache_table[i].addr == FDB_DATA_UNUSED) {
            empty_index = i;
        }
    }
    /* add the sector empty_addr to cache */
    if (sector->check_ok && empty_index < FDB_SECTOR_CACHE_TABLE_SIZE) {
        memcpy(&db->sector_cache_table[empty_index], sector, sizeof(struct kvdb_sec_info));
    }
}

/*
 * Get sector info from cache. It's return true when cache is hit.
 */
static kv_sec_info_t get_sector_from_cache(fdb_kvdb_t db, uint32_t sec_addr)
{
    size_t i;

    for (i = 0; i < FDB_SECTOR_CACHE_TABLE_SIZE; i++) {
        if (db->sector_cache_table[i].addr == sec_addr) {
            return &db->sector_cache_table[i];
        }
    }

    return NULL;
}

static void update_sector_empty_addr_cache(fdb_kvdb_t db, uint32_t sec_addr, uint32_t empty_addr)
{
    kv_sec_info_t sector = get_sector_from_cache(db, sec_addr);
    if (sector) {
        sector->empty_kv = empty_addr;
        sector->remain = db_sec_size(db) - (sector->empty_kv - sector->addr);
    }
}

static void update_sector_status_store_cache(fdb_kvdb_t db, uint32_t sec_addr, fdb_sector_store_status_t stauts)
{
    kv_sec_info_t sector = get_sector_from_cache(db, sec_addr);
    if (sector) {
        sector->status.store = stauts;
    }
}

static void update_kv_cache(fdb_kvdb_t db, const char *name, size_t name_len, uint32_t addr)
{
    size_t i, empty_index = FDB_KV_CACHE_TABLE_SIZE, min_activity_index = FDB_KV_CACHE_TABLE_SIZE;
    uint16_t name_crc = (uint16_t) (fdb_calc_crc32(0, name, name_len) >> 16), min_activity = 0xFFFF;

    for (i = 0; i < FDB_KV_CACHE_TABLE_SIZE; i++) {
        if (addr != FDB_DATA_UNUSED) {
            /* update the KV address in cache */
            if (db->kv_cache_table[i].name_crc == name_crc) {
                db->kv_cache_table[i].addr = addr;
                return;
            } else if ((db->kv_cache_table[i].addr == FDB_DATA_UNUSED) && (empty_index == FDB_KV_CACHE_TABLE_SIZE)) {
                empty_index = i;
            } else if (db->kv_cache_table[i].addr != FDB_DATA_UNUSED) {
                if (db->kv_cache_table[i].active > 0) {
                    db->kv_cache_table[i].active--;
                }
                if (db->kv_cache_table[i].active < min_activity) {
                    min_activity_index = i;
                    min_activity = db->kv_cache_table[i].active;
                }
            }
        } else if (db->kv_cache_table[i].name_crc == name_crc) {
            /* delete the KV */
            db->kv_cache_table[i].addr = FDB_DATA_UNUSED;
            db->kv_cache_table[i].active = 0;
            return;
        }
    }
    /* add the KV to cache, using LRU (Least Recently Used) like algorithm */
    if (empty_index < FDB_KV_CACHE_TABLE_SIZE) {
        db->kv_cache_table[empty_index].addr = addr;
        db->kv_cache_table[empty_index].name_crc = name_crc;
        db->kv_cache_table[empty_index].active = FDB_KV_CACHE_TABLE_SIZE;
    } else if (min_activity_index < FDB_KV_CACHE_TABLE_SIZE) {
        db->kv_cache_table[min_activity_index].addr = addr;
        db->kv_cache_table[min_activity_index].name_crc = name_crc;
        db->kv_cache_table[min_activity_index].active = FDB_KV_CACHE_TABLE_SIZE;
    }
}

/*
 * Get KV info from cache. It's return true when cache is hit.
 */
static bool get_kv_from_cache(fdb_kvdb_t db, const char *name, size_t name_len, uint32_t *addr)
{
    size_t i;
    uint16_t name_crc = (uint16_t) (fdb_calc_crc32(0, name, name_len) >> 16);

    for (i = 0; i < FDB_KV_CACHE_TABLE_SIZE; i++) {
        if ((db->kv_cache_table[i].addr != FDB_DATA_UNUSED) && (db->kv_cache_table[i].name_crc == name_crc)) {
            char saved_name[FDB_KV_NAME_MAX] = { 0 };
            /* read the KV name in flash */
            _fdb_flash_read((fdb_db_t)db, db->kv_cache_table[i].addr + KV_HDR_DATA_SIZE, (uint32_t *) saved_name, FDB_KV_NAME_MAX);
            if (!strncmp(name, saved_name, name_len)) {
                *addr = db->kv_cache_table[i].addr;
                if (db->kv_cache_table[i].active >= 0xFFFF - FDB_KV_CACHE_TABLE_SIZE) {
                    db->kv_cache_table[i].active = 0xFFFF;
                } else {
                    db->kv_cache_table[i].active += FDB_KV_CACHE_TABLE_SIZE;
                }
                return true;
            }
        }
    }

    return false;
}
#endif /* FDB_KV_USING_CACHE */

/*
 * find the next KV address by magic word on the flash
 */
static uint32_t find_next_kv_addr(fdb_kvdb_t db, uint32_t start, uint32_t end)
{
    uint8_t buf[32];
    uint32_t start_bak = start, i;
    uint32_t magic;

#ifdef FDB_KV_USING_CACHE
    kv_sec_info_t sector;
    sector = get_sector_from_cache(db, FDB_ALIGN_DOWN(start, db_sec_size(db)));
    if (sector && start == sector->empty_kv) {
        return FAILED_ADDR;
    }
#endif /* FDB_KV_USING_CACHE */

    for (; start < end && start + sizeof(buf) < end; start += (sizeof(buf) - sizeof(uint32_t))) {
        if (_fdb_flash_read((fdb_db_t)db, start, (uint32_t *) buf, sizeof(buf)) != FDB_NO_ERR)
            return FAILED_ADDR;
        for (i = 0; i < sizeof(buf) - sizeof(uint32_t) && start + i < end; i++) {
#ifndef FDB_BIG_ENDIAN            /* Little Endian Order */
            magic = buf[i] + (buf[i + 1] << 8) + (buf[i + 2] << 16) + (buf[i + 3] << 24);
#else                       /* Big Endian Order */
            magic = buf[i + 3] + (buf[i + 2] << 8) + (buf[i + 1] << 16) + (buf[i] << 24);
#endif
            if (magic == KV_MAGIC_WORD && (start + i - KV_MAGIC_OFFSET) >= start_bak) {
                return start + i - KV_MAGIC_OFFSET;
            }
        }
    }

    return FAILED_ADDR;
}

static uint32_t get_next_kv_addr(fdb_kvdb_t db, kv_sec_info_t sector, fdb_kv_t pre_kv)
{
    uint32_t addr = FAILED_ADDR;

    if (sector->status.store == FDB_SECTOR_STORE_EMPTY) {
        return FAILED_ADDR;
    }

    if (pre_kv->addr.start == FAILED_ADDR) {
        /* the first KV address */
        addr = sector->addr + SECTOR_HDR_DATA_SIZE;
    } else {
        if (pre_kv->addr.start <= sector->addr + db_sec_size(db)) {
            if (pre_kv->crc_is_ok) {
                addr = pre_kv->addr.start + pre_kv->len;
            } else {
                /* when pre_kv CRC check failed, maybe the flash has error data
                 * find_next_kv_addr after pre_kv address */
                addr = pre_kv->addr.start + FDB_WG_ALIGN(1);
            }
            /* check and find next KV address */
            addr = find_next_kv_addr(db, addr, sector->addr + db_sec_size(db) - SECTOR_HDR_DATA_SIZE);

            if (addr == FAILED_ADDR || addr > sector->addr + db_sec_size(db) || pre_kv->len == 0) {
                //TODO Sector continuous mode
                return FAILED_ADDR;
            }
        } else {
            /* no KV */
            return FAILED_ADDR;
        }
    }

    return addr;
}

static fdb_err_t read_kv(fdb_kvdb_t db, fdb_kv_t kv)
{
    struct kv_hdr_data kv_hdr;
    uint8_t buf[32];
    uint32_t calc_crc32 = 0, crc_data_len, kv_name_addr;
    fdb_err_t result = FDB_NO_ERR;
    size_t len, size;
    /* read KV header raw data */
    _fdb_flash_read((fdb_db_t)db, kv->addr.start, (uint32_t *)&kv_hdr, sizeof(struct kv_hdr_data));
    kv->status = (fdb_kv_status_t) _fdb_get_status(kv_hdr.status_table, FDB_KV_STATUS_NUM);
    kv->len = kv_hdr.len;

    if (kv->len == UINT32_MAX || kv->len > db_max_size(db) || kv->len < KV_HDR_DATA_SIZE) {
        /* the KV length was not write, so reserved the info for current KV */
        kv->len = KV_HDR_DATA_SIZE;
        if (kv->status != FDB_KV_ERR_HDR) {
            kv->status = FDB_KV_ERR_HDR;
            FDB_INFO("Error: The KV @0x%08" PRIX32 " length has an error.\n", kv->addr.start);
            _fdb_write_status((fdb_db_t)db, kv->addr.start, kv_hdr.status_table, FDB_KV_STATUS_NUM, FDB_KV_ERR_HDR, true);
        }
        kv->crc_is_ok = false;
        return FDB_READ_ERR;
    } else if (kv->len > db_sec_size(db) - SECTOR_HDR_DATA_SIZE && kv->len < db_max_size(db)) {
        //TODO Sector continuous mode, or the write length is not written completely
    }

    /* CRC32 data len(header.name_len + header.value_len + name + value), using sizeof(uint32_t) for compatible V1.x */
    calc_crc32 = fdb_calc_crc32(calc_crc32, &kv_hdr.name_len, sizeof(uint32_t));
    calc_crc32 = fdb_calc_crc32(calc_crc32, &kv_hdr.value_len, sizeof(uint32_t));
    crc_data_len = kv->len - KV_HDR_DATA_SIZE;
    /* calculate the CRC32 value */
    for (len = 0, size = 0; len < crc_data_len; len += size) {
        if (len + sizeof(buf) < crc_data_len) {
            size = sizeof(buf);
        } else {
            size = crc_data_len - len;
        }

        _fdb_flash_read((fdb_db_t)db, kv->addr.start + KV_HDR_DATA_SIZE + len, (uint32_t *) buf, FDB_WG_ALIGN(size));
        calc_crc32 = fdb_calc_crc32(calc_crc32, buf, size);
    }
    /* check CRC32 */
    if (calc_crc32 != kv_hdr.crc32) {
        size_t name_len = kv_hdr.name_len > FDB_KV_NAME_MAX ? FDB_KV_NAME_MAX : kv_hdr.name_len;
        kv->crc_is_ok = false;
        result = FDB_READ_ERR;
        /* try read the KV name, maybe read name has error */
        kv_name_addr = kv->addr.start + KV_HDR_DATA_SIZE;
        _fdb_flash_read((fdb_db_t)db, kv_name_addr, (uint32_t *)kv->name, FDB_WG_ALIGN(name_len));
        FDB_INFO("Error: Read the KV (%.*s@0x%08" PRIX32 ") CRC32 check failed!\n", name_len, kv->name, kv->addr.start);
    } else {
        kv->crc_is_ok = true;
        /* the name is behind aligned KV header */
        kv_name_addr = kv->addr.start + KV_HDR_DATA_SIZE;
        _fdb_flash_read((fdb_db_t)db, kv_name_addr, (uint32_t *) kv->name, FDB_WG_ALIGN(kv_hdr.name_len));
        /* the value is behind aligned name */
        kv->addr.value = kv_name_addr + FDB_WG_ALIGN(kv_hdr.name_len);
        kv->value_len = kv_hdr.value_len;
        kv->name_len = kv_hdr.name_len;
        if (kv_hdr.name_len >= sizeof(kv->name) / sizeof(kv->name[0])) {
            kv_hdr.name_len = sizeof(kv->name) / sizeof(kv->name[0]) - 1;
        }
        kv->name[kv_hdr.name_len] = '\0';
    }

    return result;
}

static fdb_err_t read_sector_info(fdb_kvdb_t db, uint32_t addr, kv_sec_info_t sector, bool traversal)
{
    fdb_err_t result = FDB_NO_ERR;
    struct sector_hdr_data sec_hdr = { 0 };

    FDB_ASSERT(addr % db_sec_size(db) == 0);
    FDB_ASSERT(sector);

#ifdef FDB_KV_USING_CACHE
    kv_sec_info_t sector_cache = get_sector_from_cache(db, addr);
    if (sector_cache && ((!traversal) || (traversal && sector_cache->empty_kv != FAILED_ADDR))) {
        memcpy(sector, sector_cache, sizeof(struct kvdb_sec_info));
        return result;
    }
#endif /* FDB_KV_USING_CACHE */

    /* read sector header raw data */
    _fdb_flash_read((fdb_db_t)db, addr, (uint32_t *)&sec_hdr, sizeof(struct sector_hdr_data));

    sector->status.store = FDB_SECTOR_STORE_UNUSED;
    sector->status.dirty = FDB_SECTOR_DIRTY_UNUSED;
    sector->addr = addr;
    sector->magic = sec_hdr.magic;
    /* check magic word and combined value */
    if (sector->magic != SECTOR_MAGIC_WORD || 
        (sec_hdr.combined != SECTOR_NOT_COMBINED && sec_hdr.combined != SECTOR_COMBINED)) {
        sector->check_ok = false;
        sector->combined = SECTOR_NOT_COMBINED;
        return FDB_INIT_FAILED;
    }
    sector->check_ok = true;
    /* get other sector info */
    sector->combined = sec_hdr.combined;
    sector->status.store = (fdb_sector_store_status_t) _fdb_get_status(sec_hdr.status_table.store, FDB_SECTOR_STORE_STATUS_NUM);
    sector->status.dirty = (fdb_sector_dirty_status_t) _fdb_get_status(sec_hdr.status_table.dirty, FDB_SECTOR_DIRTY_STATUS_NUM);
    /* traversal all KV and calculate the remain space size */
    if (traversal) {
        sector->remain = 0;
        sector->empty_kv = sector->addr + SECTOR_HDR_DATA_SIZE;
        if (sector->status.store == FDB_SECTOR_STORE_EMPTY) {
            sector->remain = db_sec_size(db) - SECTOR_HDR_DATA_SIZE;
        }
        else if (sector->status.store == FDB_SECTOR_STORE_USING) {
            struct fdb_kv kv_obj;

            sector->remain = db_sec_size(db) - SECTOR_HDR_DATA_SIZE;
            kv_obj.addr.start = sector->addr + SECTOR_HDR_DATA_SIZE;
            do {
                read_kv(db, &kv_obj);
                if (!kv_obj.crc_is_ok) {
                    if (kv_obj.status != FDB_KV_PRE_WRITE && kv_obj.status != FDB_KV_ERR_HDR) {
                        sector->remain = 0;
                        result = FDB_READ_ERR;
                        break;
                    }
                }
                sector->empty_kv += kv_obj.len;
                sector->remain -= kv_obj.len;
            } while ((kv_obj.addr.start = get_next_kv_addr(db, sector, &kv_obj)) != FAILED_ADDR);
            /* check the empty KV address by read continue 0xFF on flash  */
            {
                uint32_t ff_addr;

                ff_addr = _fdb_continue_ff_addr((fdb_db_t)db, sector->empty_kv, sector->addr + db_sec_size(db));
                /* check the flash data is clean */
                if (sector->empty_kv != ff_addr) {
                    /* update the sector information */
                    sector->empty_kv = ff_addr;
                    sector->remain = db_sec_size(db) - (ff_addr - sector->addr);
                }
            }

        }
#ifdef FDB_KV_USING_CACHE
        update_sector_cache(db, sector);
    } else {
        kv_sec_info_t sector_cache = get_sector_from_cache(db, sector->addr);
        if (!sector_cache) {
            sector->empty_kv = FAILED_ADDR;
            sector->remain = 0;
            update_sector_cache(db, sector);
        }
#endif
    }

    return result;
}

static uint32_t get_next_sector_addr(fdb_kvdb_t db, kv_sec_info_t pre_sec, uint32_t traversed_len)
{
    uint32_t cur_block_size;

    if (pre_sec->combined == SECTOR_NOT_COMBINED) {
        cur_block_size = db_sec_size(db);
    } else {
        cur_block_size = pre_sec->combined * db_sec_size(db);
    }

    if (traversed_len + cur_block_size <= db_max_size(db)) {
        /* if reach to the end, roll back to the first sector */
        if (pre_sec->addr + cur_block_size < db_max_size(db)) {
            return pre_sec->addr + cur_block_size;
        } else {
            /* the next sector is on the top of the database */
            return 0;
        }
    } else {
        /* finished */
        return FAILED_ADDR;
    }
}

static void kv_iterator(fdb_kvdb_t db, fdb_kv_t kv, void *arg1, void *arg2,
        bool (*callback)(fdb_kv_t kv, void *arg1, void *arg2))
{
    struct kvdb_sec_info sector;
    uint32_t sec_addr, traversed_len = 0;

    sec_addr = db_oldest_addr(db);
    /* search all sectors */
    do {
        traversed_len += db_sec_size(db);
        if (read_sector_info(db, sec_addr, &sector, false) != FDB_NO_ERR) {
            continue;
        }
        if (callback == NULL) {
            continue;
        }
        /* sector has KV */
        if (sector.status.store == FDB_SECTOR_STORE_USING || sector.status.store == FDB_SECTOR_STORE_FULL) {
            kv->addr.start = sector.addr + SECTOR_HDR_DATA_SIZE;
            /* search all KV */
            do {
                read_kv(db, kv);
                /* iterator is interrupted when callback return true */
                if (callback(kv, arg1, arg2)) {
                    return;
                }
            } while ((kv->addr.start = get_next_kv_addr(db, &sector, kv)) != FAILED_ADDR);
        }
    } while ((sec_addr = get_next_sector_addr(db, &sector, traversed_len)) != FAILED_ADDR);
}

static bool find_kv_cb(fdb_kv_t kv, void *arg1, void *arg2)
{
    const char *key = arg1;
    bool *find_ok = arg2;
    size_t key_len = strlen(key);

    if (key_len != kv->name_len) {
        return false;
    }
    /* check KV */
    if (kv->crc_is_ok && kv->status == FDB_KV_WRITE && !strncmp(kv->name, key, key_len)) {
        *find_ok = true;
        return true;
    }
    return false;
}

static bool find_kv_no_cache(fdb_kvdb_t db, const char *key, fdb_kv_t kv)
{
    bool find_ok = false;

    kv_iterator(db, kv, (void *)key, &find_ok, find_kv_cb);

    return find_ok;
}

static bool find_kv(fdb_kvdb_t db, const char *key, fdb_kv_t kv)
{
    bool find_ok = false;

#ifdef FDB_KV_USING_CACHE
    size_t key_len = strlen(key);

    if (get_kv_from_cache(db, key, key_len, &kv->addr.start)) {
        read_kv(db, kv);
        return true;
    }
#endif /* FDB_KV_USING_CACHE */

    find_ok = find_kv_no_cache(db, key, kv);

#ifdef FDB_KV_USING_CACHE
    if (find_ok) {
        update_kv_cache(db, key, key_len, kv->addr.start);
    }
#endif /* FDB_KV_USING_CACHE */

    return find_ok;
}

static bool fdb_is_str(uint8_t *value, size_t len)
{
#define __is_print(ch)       ((unsigned int)((ch) - ' ') < 127u - ' ')
    size_t i;

    for (i = 0; i < len; i++) {
        if (!__is_print(value[i])) {
            return false;
        }
    }
    return true;
}

static size_t get_kv(fdb_kvdb_t db, const char *key, void *value_buf, size_t buf_len, size_t *value_len)
{
    struct fdb_kv kv;
    size_t read_len = 0;

    if (find_kv(db, key, &kv)) {
        if (value_len) {
            *value_len = kv.value_len;
        }
        if (buf_len > kv.value_len) {
            read_len = kv.value_len;
        } else {
            read_len = buf_len;
        }
        if (value_buf){
            _fdb_flash_read((fdb_db_t)db, kv.addr.value, (uint32_t *) value_buf, read_len);
        }
    } else if (value_len) {
        *value_len = 0;
    }

    return read_len;
}

/**
 * Get a KV object by key name
 *
 * @param db database object
 * @param key KV name
 * @param kv KV object
 *
 * @return KV object when is not NULL
 */
fdb_kv_t fdb_kv_get_obj(fdb_kvdb_t db, const char *key, fdb_kv_t kv)
{
    bool find_ok = false;

    if (!db_init_ok(db)) {
        FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
        return 0;
    }

    /* lock the KV cache */
    db_lock(db);

    find_ok = find_kv(db, key, kv);

    /* unlock the KV cache */
    db_unlock(db);

    return find_ok ? kv : NULL;
}

/**
 * Convert the KV object to blob object
 *
 * @param kv KV object
 * @param blob blob object
 *
 * @return new blob object
 */
fdb_blob_t fdb_kv_to_blob(fdb_kv_t kv, fdb_blob_t blob)
{
    blob->saved.meta_addr = kv->addr.start;
    blob->saved.addr = kv->addr.value;
    blob->saved.len = kv->value_len;

    return blob;
}

/**
 * Get a blob KV value by key name.
 *
 * @param db database object
 * @param key KV name
 * @param blob blob object
 *
 * @return the actually get size on successful
 */
size_t fdb_kv_get_blob(fdb_kvdb_t db, const char *key, fdb_blob_t blob)
{
    size_t read_len = 0;

    if (!db_init_ok(db)) {
        FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
        return 0;
    }

    /* lock the KV cache */
    db_lock(db);

    read_len = get_kv(db, key, blob->buf, blob->size, &blob->saved.len);

    /* unlock the KV cache */
    db_unlock(db);

    return read_len;
}

/**
 * Get an KV value by key name.
 *
 * @note this function is NOT supported reentrant
 * @note this function is DEPRECATED
 *
 * @param db database object
 * @param key KV name
 *
 * @return value
 */
char *fdb_kv_get(fdb_kvdb_t db, const char *key)
{
    static char value[FDB_STR_KV_VALUE_MAX_SIZE + 1];
    size_t get_size;
    struct fdb_blob blob;

    if ((get_size = fdb_kv_get_blob(db, key, fdb_blob_make(&blob, value, FDB_STR_KV_VALUE_MAX_SIZE))) > 0) {
        /* the return value must be string */
        if (fdb_is_str((uint8_t *)value, get_size)) {
            value[get_size] = '\0';
            return value;
        } else if (blob.saved.len > FDB_STR_KV_VALUE_MAX_SIZE) {
            FDB_INFO("Warning: The default string KV value buffer length (%" PRIdLEAST16 ") is too less (%" PRIu32 ").\n", FDB_STR_KV_VALUE_MAX_SIZE,
                    (uint32_t)blob.saved.len);
        } else {
            FDB_INFO("Warning: The KV value isn't string. Could not be returned\n");
            return NULL;
        }
    }

    return NULL;
}

static fdb_err_t write_kv_hdr(fdb_kvdb_t db, uint32_t addr, kv_hdr_data_t kv_hdr)
{
    fdb_err_t result = FDB_NO_ERR;
    /* write the status will by write granularity */
    result = _fdb_write_status((fdb_db_t)db, addr, kv_hdr->status_table, FDB_KV_STATUS_NUM, FDB_KV_PRE_WRITE, false);
    if (result != FDB_NO_ERR) {
        return result;
    }
    /* write other header data */
    result = _fdb_flash_write((fdb_db_t)db, addr + KV_MAGIC_OFFSET, &kv_hdr->magic, sizeof(struct kv_hdr_data) - KV_MAGIC_OFFSET, false);

    return result;
}

static fdb_err_t format_sector(fdb_kvdb_t db, uint32_t addr, uint32_t combined_value)
{
    fdb_err_t result = FDB_NO_ERR;
    struct sector_hdr_data sec_hdr = { 0 };

    FDB_ASSERT(addr % db_sec_size(db) == 0);

    result = _fdb_flash_erase((fdb_db_t)db, addr, db_sec_size(db));
    if (result == FDB_NO_ERR) {
        /* initialize the header data */
        memset(&sec_hdr, FDB_BYTE_ERASED, sizeof(struct sector_hdr_data));
#if (FDB_WRITE_GRAN == 1)
        _fdb_set_status(sec_hdr.status_table.store, FDB_SECTOR_STORE_STATUS_NUM, FDB_SECTOR_STORE_EMPTY);
        _fdb_set_status(sec_hdr.status_table.dirty, FDB_SECTOR_DIRTY_STATUS_NUM, FDB_SECTOR_DIRTY_FALSE);
        sec_hdr.magic = SECTOR_MAGIC_WORD;
        sec_hdr.combined = combined_value;
        sec_hdr.reserved = FDB_DATA_UNUSED;
        /* save the header */
        result = _fdb_flash_write((fdb_db_t)db, addr, (uint32_t *)&sec_hdr, SECTOR_HDR_DATA_SIZE, true);
#else   // seperate the whole "sec_hdr" program to serval sinle program operation to prevent re-program issue on STM32L4xx or
        // other MCU internal flash
        /* write the sector store status */
        _fdb_write_status((fdb_db_t)db,
                          addr + SECTOR_STORE_OFFSET,
                          sec_hdr.status_table.store,
                          FDB_SECTOR_STORE_STATUS_NUM,
                          FDB_SECTOR_STORE_EMPTY,
                          true);

        /* write the sector dirty status */
        _fdb_write_status((fdb_db_t)db,
                          addr + SECTOR_DIRTY_OFFSET,
                          sec_hdr.status_table.dirty,
                          FDB_SECTOR_DIRTY_STATUS_NUM,
                          FDB_SECTOR_DIRTY_FALSE,
                          true);

        /* write the magic word and combined next sector number */
        sec_hdr.magic = SECTOR_MAGIC_WORD;
        sec_hdr.combined = combined_value;
        sec_hdr.reserved = FDB_DATA_UNUSED;
        result = _fdb_flash_write((fdb_db_t)db,
                                  addr + SECTOR_MAGIC_OFFSET,
                                  (void *)(&(sec_hdr.magic)),
                                  (sizeof(struct sector_hdr_data) - SECTOR_MAGIC_OFFSET),
                                  true);
#endif

#ifdef FDB_KV_USING_CACHE
        {
            struct kvdb_sec_info sector = {.addr = addr, .check_ok = false, .empty_kv = FAILED_ADDR };
            /* delete the sector cache */
            update_sector_cache(db, &sector);
        }
#endif /* FDB_KV_USING_CACHE */
    }

    return result;
}

static fdb_err_t update_sec_status(fdb_kvdb_t db, kv_sec_info_t sector, size_t new_kv_len, bool *is_full)
{
    uint8_t status_table[FDB_STORE_STATUS_TABLE_SIZE];
    fdb_err_t result = FDB_NO_ERR;
    /* change the current sector status */
    if (sector->status.store == FDB_SECTOR_STORE_EMPTY) {
        /* change the sector status to using */
        result = _fdb_write_status((fdb_db_t)db, sector->addr, status_table, FDB_SECTOR_STORE_STATUS_NUM, FDB_SECTOR_STORE_USING, true);

#ifdef FDB_KV_USING_CACHE
        update_sector_status_store_cache(db, sector->addr, FDB_SECTOR_STORE_USING);
#endif /* FDB_KV_USING_CACHE */

    } else if (sector->status.store == FDB_SECTOR_STORE_USING) {
        /* check remain size */
        if (sector->remain < FDB_SEC_REMAIN_THRESHOLD || sector->remain - new_kv_len < FDB_SEC_REMAIN_THRESHOLD) {
            /* change the sector status to full */
            result = _fdb_write_status((fdb_db_t)db, sector->addr, status_table, FDB_SECTOR_STORE_STATUS_NUM, FDB_SECTOR_STORE_FULL, true);

#ifdef FDB_KV_USING_CACHE
            update_sector_status_store_cache(db, sector->addr, FDB_SECTOR_STORE_FULL);
#endif /* FDB_KV_USING_CACHE */

            if (is_full) {
                *is_full = true;
            }
        } else if (is_full) {
            *is_full = false;
        }
    }

    return result;
}

static void sector_iterator(fdb_kvdb_t db, kv_sec_info_t sector, fdb_sector_store_status_t status, void *arg1, void *arg2,
        bool (*callback)(kv_sec_info_t sector, void *arg1, void *arg2), bool traversal_kv)
{
    uint32_t sec_addr, traversed_len = 0;

    /* search all sectors */
    sec_addr = db_oldest_addr(db);
    do {
        traversed_len += db_sec_size(db);
        read_sector_info(db, sec_addr, sector, false);
        if (status == FDB_SECTOR_STORE_UNUSED || status == sector->status.store) {
            if (traversal_kv) {
                read_sector_info(db, sec_addr, sector, true);
            }
            /* iterator is interrupted when callback return true */
            if (callback && callback(sector, arg1, arg2)) {
                return;
            }
        }
    } while ((sec_addr = get_next_sector_addr(db, sector, traversed_len)) != FAILED_ADDR);
}

static bool sector_statistics_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
    size_t *empty_sector = arg1, *using_sector = arg2;

    if (sector->check_ok && sector->status.store == FDB_SECTOR_STORE_EMPTY) {
        (*empty_sector)++;
    } else if (sector->check_ok && sector->status.store == FDB_SECTOR_STORE_USING) {
        (*using_sector)++;
    }

    return false;
}

static bool alloc_kv_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
    struct alloc_kv_cb_args *arg = arg1;

    /* 1. sector has space
     * 2. the NO dirty sector
     * 3. the dirty sector only when the gc_request is false */
    if (sector->check_ok && sector->remain > arg->kv_size + FDB_SEC_REMAIN_THRESHOLD
            && ((sector->status.dirty == FDB_SECTOR_DIRTY_FALSE)
                    || (sector->status.dirty == FDB_SECTOR_DIRTY_TRUE && !arg->db->gc_request))) {
        *(arg->empty_kv) = sector->empty_kv;
        return true;
    }

    return false;
}

static uint32_t alloc_kv(fdb_kvdb_t db, kv_sec_info_t sector, size_t kv_size)
{
    uint32_t empty_kv = FAILED_ADDR;
    size_t empty_sector = 0, using_sector = 0;
    struct alloc_kv_cb_args arg = {db, kv_size, &empty_kv};

    /* sector status statistics */
    sector_iterator(db, sector, FDB_SECTOR_STORE_UNUSED, &empty_sector, &using_sector, sector_statistics_cb, false);
    if (using_sector > 0) {
        /* alloc the KV from the using status sector first */
        sector_iterator(db, sector, FDB_SECTOR_STORE_USING, &arg, NULL, alloc_kv_cb, true);
    }
    if (empty_sector > 0 && empty_kv == FAILED_ADDR) {
        if (empty_sector > FDB_GC_EMPTY_SEC_THRESHOLD || db->gc_request) {
            sector_iterator(db, sector, FDB_SECTOR_STORE_EMPTY, &arg, NULL, alloc_kv_cb, true);
        } else {
            /* no space for new KV now will GC and retry */
            FDB_DEBUG("Trigger a GC check after alloc KV failed.\n");
            db->gc_request = true;
        }
    }

    return empty_kv;
}

static fdb_err_t del_kv(fdb_kvdb_t db, const char *key, fdb_kv_t old_kv, bool complete_del)
{
    fdb_err_t result = FDB_NO_ERR;
    uint32_t dirty_status_addr;
    struct fdb_kv kv = { FDB_KV_UNUSED };

#if (KV_STATUS_TABLE_SIZE >= FDB_DIRTY_STATUS_TABLE_SIZE)
    uint8_t status_table[KV_STATUS_TABLE_SIZE];
#else
    uint8_t status_table[DIRTY_STATUS_TABLE_SIZE];
#endif

    /* need find KV */
    if (!old_kv) {
        /* find KV */
        if (find_kv(db, key, &kv)) {
            old_kv = &kv;
        } else {
            FDB_DEBUG("Not found '%s' in KV.\n", key);
            return FDB_KV_NAME_ERR;
        }
    }
    /* change and save the new status */
    if (!complete_del) {
        result = _fdb_write_status((fdb_db_t)db, old_kv->addr.start, status_table, FDB_KV_STATUS_NUM, FDB_KV_PRE_DELETE, false);
        db->last_is_complete_del = true;
    } else {
        result = _fdb_write_status((fdb_db_t)db, old_kv->addr.start, status_table, FDB_KV_STATUS_NUM, FDB_KV_DELETED, true);

        if (!db->last_is_complete_del && result == FDB_NO_ERR) {
#ifdef FDB_KV_USING_CACHE
            /* delete the KV in flash and cache */
            if (key != NULL) {
                /* when using del_kv(db, key, NULL, true) or del_kv(db, key, kv, true) in fdb_del_kv(db, ) and set_kv(db, ) */
                update_kv_cache(db, key, strlen(key), FDB_DATA_UNUSED);
            } else if (old_kv != NULL) {
                /* when using del_kv(db, NULL, kv, true) in move_kv(db, ) */
                update_kv_cache(db, old_kv->name, old_kv->name_len, FDB_DATA_UNUSED);
            }
#endif /* FDB_KV_USING_CACHE */
        }

        db->last_is_complete_del = false;
    }

    dirty_status_addr = FDB_ALIGN_DOWN(old_kv->addr.start, db_sec_size(db)) + SECTOR_DIRTY_OFFSET;
    /* read and change the sector dirty status */
    if (result == FDB_NO_ERR
            && _fdb_read_status((fdb_db_t)db, dirty_status_addr, status_table, FDB_SECTOR_DIRTY_STATUS_NUM) == FDB_SECTOR_DIRTY_FALSE) {
        result = _fdb_write_status((fdb_db_t)db, dirty_status_addr, status_table, FDB_SECTOR_DIRTY_STATUS_NUM, FDB_SECTOR_DIRTY_TRUE, true);
#ifdef FDB_KV_USING_CACHE
        {
            kv_sec_info_t sector_cache = get_sector_from_cache(db, FDB_ALIGN_DOWN(old_kv->addr.start, db_sec_size(db)));
            if (sector_cache) {
                sector_cache->status.dirty = FDB_SECTOR_DIRTY_TRUE;
            }
        }
#endif /* FDB_KV_USING_CACHE */
    }

    return result;
}

/*
 * move the KV to new space
 */
static fdb_err_t move_kv(fdb_kvdb_t db, fdb_kv_t kv)
{
    fdb_err_t result = FDB_NO_ERR;
    uint8_t status_table[KV_STATUS_TABLE_SIZE];
    uint32_t kv_addr;
    struct kvdb_sec_info sector;

    /* prepare to delete the current KV */
    if (kv->status == FDB_KV_WRITE) {
        del_kv(db, NULL, kv, false);
    }

    if ((kv_addr = alloc_kv(db, &sector, kv->len)) != FAILED_ADDR) {
        if (db->in_recovery_check && kv->status == FDB_KV_PRE_DELETE) {
            struct fdb_kv kv_bak;
            char name[FDB_KV_NAME_MAX + 1] = { 0 };
            strncpy(name, kv->name, kv->name_len);
            /* check the KV in flash is already create success */
            if (find_kv_no_cache(db, name, &kv_bak)) {
                /* already create success, don't need to duplicate */
                result = FDB_NO_ERR;
                goto __exit;
            }
        }
    } else {
        return FDB_SAVED_FULL;
    }
    /* start move the KV */
    {
        uint8_t buf[32];
        size_t len, size, kv_len = kv->len;

        /* update the new KV sector status first */
        update_sec_status(db, &sector, kv->len, NULL);

        _fdb_write_status((fdb_db_t)db, kv_addr, status_table, FDB_KV_STATUS_NUM, FDB_KV_PRE_WRITE, false);
        kv_len -= KV_MAGIC_OFFSET;
        for (len = 0, size = 0; len < kv_len; len += size) {
            if (len + sizeof(buf) < kv_len) {
                size = sizeof(buf);
            } else {
                size = kv_len - len;
            }
            _fdb_flash_read((fdb_db_t)db, kv->addr.start + KV_MAGIC_OFFSET + len, (uint32_t *) buf, FDB_WG_ALIGN(size));
            result = _fdb_flash_write((fdb_db_t)db, kv_addr + KV_MAGIC_OFFSET + len, (uint32_t *) buf, size, true);
        }
        _fdb_write_status((fdb_db_t)db, kv_addr, status_table, FDB_KV_STATUS_NUM, FDB_KV_WRITE, true);

#ifdef FDB_KV_USING_CACHE
        update_sector_empty_addr_cache(db, FDB_ALIGN_DOWN(kv_addr, db_sec_size(db)),
                kv_addr + KV_HDR_DATA_SIZE + FDB_WG_ALIGN(kv->name_len) + FDB_WG_ALIGN(kv->value_len));
        update_kv_cache(db, kv->name, kv->name_len, kv_addr);
#endif /* FDB_KV_USING_CACHE */
    }

    FDB_DEBUG("Moved the KV (%.*s) from 0x%08" PRIX32 " to 0x%08" PRIX32 ".\n", kv->name_len, kv->name, kv->addr.start, kv_addr);

__exit:
    del_kv(db, NULL, kv, true);

    return result;
}

static uint32_t new_kv(fdb_kvdb_t db, kv_sec_info_t sector, size_t kv_size)
{
    bool already_gc = false;
    uint32_t empty_kv = FAILED_ADDR;

__retry:

    if ((empty_kv = alloc_kv(db, sector, kv_size)) == FAILED_ADDR) {
        if (db->gc_request && !already_gc) {
            FDB_INFO("Warning: Alloc an KV (size %" PRIu32 ") failed when new KV. Now will GC then retry.\n", (uint32_t)kv_size);
            gc_collect_by_free_size(db, kv_size);
            already_gc = true;
            goto __retry;
        } else if (already_gc) {
            FDB_INFO("Error: Alloc an KV (size %" PRIuLEAST16 ") failed after GC. KV full.\n", kv_size);
            db->gc_request = false;
        }
    }

    return empty_kv;
}

static uint32_t new_kv_ex(fdb_kvdb_t db, kv_sec_info_t sector, size_t key_len, size_t buf_len)
{
    size_t kv_len = KV_HDR_DATA_SIZE + FDB_WG_ALIGN(key_len) + FDB_WG_ALIGN(buf_len);

    return new_kv(db, sector, kv_len);
}

static bool gc_check_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
    size_t *empty_sec = arg1;

    if (sector->check_ok) {
        *empty_sec = *empty_sec + 1;
    }

    return false;

}

static bool do_gc(kv_sec_info_t sector, void *arg1, void *arg2)
{
    struct fdb_kv kv;
    struct gc_cb_args *gc = (struct gc_cb_args *)arg1;
    fdb_kvdb_t db = gc->db;

    if (sector->check_ok && (sector->status.dirty == FDB_SECTOR_DIRTY_TRUE || sector->status.dirty == FDB_SECTOR_DIRTY_GC)) {
        uint8_t status_table[FDB_DIRTY_STATUS_TABLE_SIZE];
        /* change the sector status to GC */
        _fdb_write_status((fdb_db_t)db, sector->addr + SECTOR_DIRTY_OFFSET, status_table, FDB_SECTOR_DIRTY_STATUS_NUM, FDB_SECTOR_DIRTY_GC, true);
        /* search all KV */
        kv.addr.start = sector->addr + SECTOR_HDR_DATA_SIZE;
        do {
            read_kv(db, &kv);
            if (kv.crc_is_ok && (kv.status == FDB_KV_WRITE || kv.status == FDB_KV_PRE_DELETE)) {
                /* move the KV to new space */
                if (move_kv(db, &kv) != FDB_NO_ERR) {
                    FDB_INFO("Error: Moved the KV (%.*s) for GC failed.\n", kv.name_len, kv.name);
                }
            }
        } while ((kv.addr.start = get_next_kv_addr(db, sector, &kv)) != FAILED_ADDR);
        format_sector(db, sector->addr, SECTOR_NOT_COMBINED);
        gc->cur_free_size += db_sec_size(db) - SECTOR_HDR_DATA_SIZE;
        FDB_DEBUG("Collect a sector @0x%08" PRIX32 "\n", sector->addr);
        /* update oldest_addr for next GC sector format */
        db_oldest_addr(db) = get_next_sector_addr(db, sector, 0);
        if (gc->cur_free_size >= gc->setting_free_size)
            return true;
    }

    return false;
}

static void gc_collect_by_free_size(fdb_kvdb_t db, size_t free_size)
{
    struct kvdb_sec_info sector;
    size_t empty_sec = 0;
    struct gc_cb_args arg = { db, 0, free_size, 0 };

    /* GC check the empty sector number */
    sector_iterator(db, &sector, FDB_SECTOR_STORE_EMPTY, &empty_sec, NULL, gc_check_cb, false);

    /* do GC collect */
    FDB_DEBUG("The remain empty sector is %" PRIu32 ", GC threshold is %" PRIdLEAST16 ".\n", (uint32_t)empty_sec, FDB_GC_EMPTY_SEC_THRESHOLD);
    if (empty_sec <= FDB_GC_EMPTY_SEC_THRESHOLD) {
        sector_iterator(db, &sector, FDB_SECTOR_STORE_UNUSED, &arg, NULL, do_gc, false);
    }

    db->gc_request = false;
}

/*
 * The GC will be triggered on the following scene:
 * 1. alloc an KV when the flash not has enough space
 * 2. write an KV then the flash not has enough space
 */
static void gc_collect(fdb_kvdb_t db)
{
    gc_collect_by_free_size(db, db_max_size(db));
}

static fdb_err_t align_write(fdb_kvdb_t db, uint32_t addr, const uint32_t *buf, size_t size)
{
    fdb_err_t result = FDB_NO_ERR;
    size_t align_remain;

#if (FDB_WRITE_GRAN / 8 > 0)
    uint8_t align_data[FDB_WRITE_GRAN / 8];
    size_t align_data_size = sizeof(align_data);
#else
    /* For compatibility with C89 */
    uint8_t align_data_u8, *align_data = &align_data_u8;
    size_t align_data_size = 1;
#endif

    memset(align_data, FDB_BYTE_ERASED, align_data_size);
    result = _fdb_flash_write((fdb_db_t) db, addr, buf, FDB_WG_ALIGN_DOWN(size), false);

    align_remain = size - FDB_WG_ALIGN_DOWN(size);
    if (result == FDB_NO_ERR && align_remain) {
        memcpy(align_data, (uint8_t *) buf + FDB_WG_ALIGN_DOWN(size), align_remain);
        result = _fdb_flash_write((fdb_db_t) db, addr + FDB_WG_ALIGN_DOWN(size), (uint32_t *) align_data,
                align_data_size, false);
    }

    return result;
}

static fdb_err_t create_kv_blob(fdb_kvdb_t db, kv_sec_info_t sector, const char *key, const void *value, size_t len)
{
    fdb_err_t result = FDB_NO_ERR;
    struct kv_hdr_data kv_hdr;
    bool is_full = false;
    uint32_t kv_addr = sector->empty_kv;

    if (strlen(key) > FDB_KV_NAME_MAX) {
        FDB_INFO("Error: The KV name length is more than %d\n", FDB_KV_NAME_MAX);
        return FDB_KV_NAME_ERR;
    }

    memset(&kv_hdr, FDB_BYTE_ERASED, sizeof(struct kv_hdr_data));
    kv_hdr.magic = KV_MAGIC_WORD;
    kv_hdr.name_len = strlen(key);
    kv_hdr.value_len = len;
    kv_hdr.len = KV_HDR_DATA_SIZE + FDB_WG_ALIGN(kv_hdr.name_len) + FDB_WG_ALIGN(kv_hdr.value_len);

    if (kv_hdr.len > db_sec_size(db) - SECTOR_HDR_DATA_SIZE) {
        FDB_INFO("Error: The KV size is too big\n");
        return FDB_SAVED_FULL;
    }

    if (kv_addr != FAILED_ADDR || (kv_addr = new_kv(db, sector, kv_hdr.len)) != FAILED_ADDR) {
        size_t align_remain;
        /* update the sector status */
        if (result == FDB_NO_ERR) {
            result = update_sec_status(db, sector, kv_hdr.len, &is_full);
        }
        if (result == FDB_NO_ERR) {
            uint8_t ff = FDB_BYTE_ERASED;
            /* start calculate CRC32 */
            kv_hdr.crc32 = 0;
            /* CRC32(header.name_len + header.value_len + name + value), using sizeof(uint32_t) for compatible V1.x */
            kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, &kv_hdr.name_len, sizeof(uint32_t));
            kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, &kv_hdr.value_len, sizeof(uint32_t));
            kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, key, kv_hdr.name_len);
            align_remain = FDB_WG_ALIGN(kv_hdr.name_len) - kv_hdr.name_len;
            while (align_remain--) {
                kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, &ff, 1);
            }
            kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, value, kv_hdr.value_len);
            align_remain = FDB_WG_ALIGN(kv_hdr.value_len) - kv_hdr.value_len;
            while (align_remain--) {
                kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, &ff, 1);
            }
            /* write KV header data */
            result = write_kv_hdr(db, kv_addr, &kv_hdr);
        }
        /* write key name */
        if (result == FDB_NO_ERR) {
            result = align_write(db, kv_addr + KV_HDR_DATA_SIZE, (uint32_t *) key, kv_hdr.name_len);

#ifdef FDB_KV_USING_CACHE
            if (!is_full) {
                update_sector_empty_addr_cache(db, sector->addr,
                        kv_addr + KV_HDR_DATA_SIZE + FDB_WG_ALIGN(kv_hdr.name_len) + FDB_WG_ALIGN(kv_hdr.value_len));
            }
            update_kv_cache(db, key, kv_hdr.name_len, kv_addr);
#endif /* FDB_KV_USING_CACHE */
        }
        /* write value */
        if (result == FDB_NO_ERR) {
            result = align_write(db, kv_addr + KV_HDR_DATA_SIZE + FDB_WG_ALIGN(kv_hdr.name_len), value,
                    kv_hdr.value_len);
        }
        /* change the KV status to KV_WRITE */
        if (result == FDB_NO_ERR) {
            result = _fdb_write_status((fdb_db_t) db, kv_addr, kv_hdr.status_table, FDB_KV_STATUS_NUM, FDB_KV_WRITE,
                    true);
        }
        /* trigger GC collect when current sector is full */
        if (result == FDB_NO_ERR && is_full) {
            FDB_DEBUG("Trigger a GC check after created KV.\n");
            db->gc_request = true;
        }
    } else {
        result = FDB_SAVED_FULL;
    }

    return result;
}

/**
 * Delete an KV.
 *
 * @param db database object
 * @param key KV name
 *
 * @return result
 */
fdb_err_t fdb_kv_del(fdb_kvdb_t db, const char *key)
{
    fdb_err_t result = FDB_NO_ERR;

    if (!db_init_ok(db)) {
        FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
        return FDB_INIT_FAILED;
    }

    /* lock the KV cache */
    db_lock(db);

    result = del_kv(db, key, NULL, true);

    /* unlock the KV cache */
    db_unlock(db);

    return result;
}

static fdb_err_t set_kv(fdb_kvdb_t db, const char *key, const void *value_buf, size_t buf_len)
{
    fdb_err_t result = FDB_NO_ERR;
    bool kv_is_found = false;

    if (value_buf == NULL) {
        result = del_kv(db, key, NULL, true);
    } else {
        /* make sure the flash has enough space */
        if (new_kv_ex(db, &db->cur_sector, strlen(key), buf_len) == FAILED_ADDR) {
            return FDB_SAVED_FULL;
        }
        kv_is_found = find_kv(db, key, &db->cur_kv);
        /* prepare to delete the old KV */
        if (kv_is_found) {
            result = del_kv(db, key, &db->cur_kv, false);
        }
        /* create the new KV */
        if (result == FDB_NO_ERR) {
            result = create_kv_blob(db, &db->cur_sector, key, value_buf, buf_len);
        }
        /* delete the old KV */
        if (kv_is_found && result == FDB_NO_ERR) {
            result = del_kv(db, key, &db->cur_kv, true);
        }
        /* process the GC after set KV */
        if (db->gc_request) {
            gc_collect_by_free_size(db, KV_HDR_DATA_SIZE + FDB_WG_ALIGN(strlen(key)) + FDB_WG_ALIGN(buf_len));
        }
    }

    return result;
}

/**
 * Set a blob KV. If it blob value is NULL, delete it.
 * If not find it in flash, then create it.
 *
 * @param db database object
 * @param key KV name
 * @param blob blob object
 *
 * @return result
 */
fdb_err_t fdb_kv_set_blob(fdb_kvdb_t db, const char *key, fdb_blob_t blob)
{
    fdb_err_t result = FDB_NO_ERR;

    if (!db_init_ok(db)) {
        FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
        return FDB_INIT_FAILED;
    }

    /* lock the KV cache */
    db_lock(db);

    result = set_kv(db, key, blob->buf, blob->size);

    /* unlock the KV cache */
    db_unlock(db);

    return result;
}

/**
 * Set a string KV. If it value is NULL, delete it.
 * If not find it in flash, then create it.
 *
 * @param db database object
 * @param key KV name
 * @param value KV value
 *
 * @return result
 */
fdb_err_t fdb_kv_set(fdb_kvdb_t db, const char *key, const char *value)
{
    struct fdb_blob blob;

    return fdb_kv_set_blob(db, key, fdb_blob_make(&blob, value, strlen(value)));
}

/**
 * recovery all KV to default.
 *
 * @param db database object
 * @return result
 */
fdb_err_t fdb_kv_set_default(fdb_kvdb_t db)
{
    fdb_err_t result = FDB_NO_ERR;
    uint32_t addr, i, value_len;
    struct kvdb_sec_info sector;

    /* lock the KV cache */
    db_lock(db);
    /* format all sectors */
    for (addr = 0; addr < db_max_size(db); addr += db_sec_size(db)) {
        result = format_sector(db, addr, SECTOR_NOT_COMBINED);
        if (result != FDB_NO_ERR) {
            goto __exit;
        }
    }
    /* create default KV */
    for (i = 0; i < db->default_kvs.num; i++) {
        /* It seems to be a string when value length is 0.
         * This mechanism is for compatibility with older versions (less then V4.0). */
        if (db->default_kvs.kvs[i].value_len == 0) {
            value_len = strlen(db->default_kvs.kvs[i].value);
        } else {
            value_len = db->default_kvs.kvs[i].value_len;
        }
        sector.empty_kv = FAILED_ADDR;
        create_kv_blob(db, &sector, db->default_kvs.kvs[i].key, db->default_kvs.kvs[i].value, value_len);
        if (result != FDB_NO_ERR) {
            goto __exit;
        }
    }

__exit:
    db_oldest_addr(db) = 0;
    /* unlock the KV cache */
    db_unlock(db);

    return result;
}

static bool print_kv_cb(fdb_kv_t kv, void *arg1, void *arg2)
{
    bool value_is_str = true, print_value = false;
    size_t *using_size = arg1;
    fdb_kvdb_t db = arg2;

    if (kv->crc_is_ok) {
        /* calculate the total using flash size */
        *using_size += kv->len;
        /* check KV */
        if (kv->status == FDB_KV_WRITE) {
            FDB_PRINT("%.*s=", kv->name_len, kv->name);

            if (kv->value_len < FDB_STR_KV_VALUE_MAX_SIZE ) {
                uint8_t buf[32];
                size_t len, size;
__reload:
                /* check the value is string */
                for (len = 0, size = 0; len < kv->value_len; len += size) {
                    if (len + sizeof(buf) < kv->value_len) {
                        size = sizeof(buf);
                    } else {
                        size = kv->value_len - len;
                    }
                    _fdb_flash_read((fdb_db_t)db, kv->addr.value + len, (uint32_t *) buf, FDB_WG_ALIGN(size));
                    if (print_value) {
                        FDB_PRINT("%.*s", (int)size, buf);
                    } else if (!fdb_is_str(buf, size)) {
                        value_is_str = false;
                        break;
                    }
                }
            } else {
                value_is_str = false;
            }
            if (value_is_str && !print_value) {
                print_value = true;
                goto __reload;
            } else if (!value_is_str) {
                FDB_PRINT("blob @0x%08" PRIX32 " %" PRIu32 "bytes", kv->addr.value, kv->value_len);
            }
            FDB_PRINT("\n");
        }
    }

    return false;
}


/**
 * Print all KV.
 *
 * @param db database object
 */
void fdb_kv_print(fdb_kvdb_t db)
{
    struct fdb_kv kv;
    size_t using_size = 0;

    if (!db_init_ok(db)) {
        FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
        return;
    }

    /* lock the KV cache */
    db_lock(db);

    kv_iterator(db, &kv, &using_size, db, print_kv_cb);

    FDB_PRINT("\nmode: next generation\n");
    FDB_PRINT("size: %" PRIu32 "/%" PRIu32 " bytes.\n", (uint32_t)using_size + ((SECTOR_NUM - FDB_GC_EMPTY_SEC_THRESHOLD) * SECTOR_HDR_DATA_SIZE),
            db_max_size(db) - db_sec_size(db) * FDB_GC_EMPTY_SEC_THRESHOLD);

    /* unlock the KV cache */
    db_unlock(db);
}

#ifdef FDB_KV_AUTO_UPDATE
/*
 * Auto update KV to latest default when current setting version number is changed.
 */
static void kv_auto_update(fdb_kvdb_t db)
{
    size_t saved_ver_num, setting_ver_num = db->ver_num;

    if (get_kv(db, VER_NUM_KV_NAME, &saved_ver_num, sizeof(size_t), NULL) > 0) {
        /* check version number */
        if (saved_ver_num != setting_ver_num) {
            size_t i, value_len;
            FDB_DEBUG("Update the KV from version %zu to %zu.\n", saved_ver_num, setting_ver_num);
            for (i = 0; i < db->default_kvs.num; i++) {
                /* add a new KV when it's not found */
                if (!find_kv(db, db->default_kvs.kvs[i].key, &db->cur_kv)) {
                    /* It seems to be a string when value length is 0.
                     * This mechanism is for compatibility with older versions (less then V4.0). */
                    if (db->default_kvs.kvs[i].value_len == 0) {
                        value_len = strlen(db->default_kvs.kvs[i].value);
                    } else {
                        value_len = db->default_kvs.kvs[i].value_len;
                    }
                    db->cur_sector.empty_kv = FAILED_ADDR;
                    create_kv_blob(db, &db->cur_sector, db->default_kvs.kvs[i].key, db->default_kvs.kvs[i].value, value_len);
                }
            }
        } else {
            /* version number not changed now return */
            return;
        }
    }

    set_kv(db, VER_NUM_KV_NAME, &setting_ver_num, sizeof(size_t));
}
#endif /* FDB_KV_AUTO_UPDATE */

static bool check_oldest_addr_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
    uint32_t *sector_oldest_addr = (uint32_t *) arg1;
    fdb_sector_store_status_t *last_sector_status = (fdb_sector_store_status_t *)arg2;

    /* The oldest address is 0 by default.
     * The new oldest sector is found when sector status change from empty to full or using.
     */
    if (*last_sector_status == FDB_SECTOR_STORE_EMPTY
            && (sector->status.store == FDB_SECTOR_STORE_FULL || sector->status.store == FDB_SECTOR_STORE_USING)) {
        *sector_oldest_addr = sector->addr;
    }

    *last_sector_status = sector->status.store;
    return false;
}

static bool check_sec_hdr_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
    if (!sector->check_ok) {
        size_t *failed_count = arg1;
        fdb_kvdb_t db = arg2;

        (*failed_count) ++;
        if (db->parent.not_formatable) {
            return true;
        } else {
            FDB_INFO("Sector header info is incorrect. Auto format this sector (0x%08" PRIX32 ").\n", sector->addr);
            format_sector(db, sector->addr, SECTOR_NOT_COMBINED);
        }
    }

    return false;
}

static bool check_and_recovery_gc_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
    fdb_kvdb_t db = arg1;

    if (sector->check_ok && sector->status.dirty == FDB_SECTOR_DIRTY_GC) {
        /* make sure the GC request flag to true */
        db->gc_request = true;
        /* resume the GC operate */
        gc_collect(db);
    }

    return false;
}

static bool check_and_recovery_kv_cb(fdb_kv_t kv, void *arg1, void *arg2)
{
    fdb_kvdb_t db = arg1;

    /* recovery the prepare deleted KV */
    if (kv->crc_is_ok && kv->status == FDB_KV_PRE_DELETE) {
        FDB_INFO("Found an KV (%.*s) which has changed value failed. Now will recovery it.\n", kv->name_len, kv->name);
        /* recovery the old KV */
        if (move_kv(db, kv) == FDB_NO_ERR) {
            FDB_DEBUG("Recovery the KV successful.\n");
        } else {
            FDB_DEBUG("Warning: Moved an KV (size %" PRIu32 ") failed when recovery. Now will GC then retry.\n", kv->len);
            return true;
        }
    } else if (kv->status == FDB_KV_PRE_WRITE) {
        uint8_t status_table[KV_STATUS_TABLE_SIZE];
        /* the KV has not write finish, change the status to error */
        //TODO Draw the state replacement diagram of exception handling
        _fdb_write_status((fdb_db_t)db, kv->addr.start, status_table, FDB_KV_STATUS_NUM, FDB_KV_ERR_HDR, true);
        return true;
    } else if (kv->crc_is_ok && kv->status == FDB_KV_WRITE) {
#ifdef FDB_KV_USING_CACHE
        /* update the cache when first load. If caching is disabled, this step is not performed */
        update_kv_cache(db, kv->name, kv->name_len, kv->addr.start);
#endif
    }

    return false;
}

/**
 * Check and load the flash KV.
 *
 * @return result
 */
static fdb_err_t _fdb_kv_load(fdb_kvdb_t db)
{
    fdb_err_t result = FDB_NO_ERR;
    struct fdb_kv kv;
    struct kvdb_sec_info sector;
    size_t check_failed_count = 0;

    db->in_recovery_check = true;
    /* check all sector header */
    sector_iterator(db, &sector, FDB_SECTOR_STORE_UNUSED, &check_failed_count, db, check_sec_hdr_cb, false);
    if (db->parent.not_formatable && check_failed_count > 0) {
        return FDB_READ_ERR;
    }
    /* all sector header check failed */
    if (check_failed_count == SECTOR_NUM) {
        FDB_INFO("All sector header is incorrect. Set it to default.\n");
        fdb_kv_set_default(db);
    }

    /* check all sector header for recovery GC */
    sector_iterator(db, &sector, FDB_SECTOR_STORE_UNUSED, db, NULL, check_and_recovery_gc_cb, false);

__retry:
    /* check all KV for recovery */
    kv_iterator(db, &kv, db, NULL, check_and_recovery_kv_cb);
    if (db->gc_request) {
        gc_collect(db);
        goto __retry;
    }

    db->in_recovery_check = false;

    return result;
}

/**
 * This function will get or set some options of the database
 *
 * @param db database object
 * @param cmd the control command
 * @param arg the argument
 */
void fdb_kvdb_control(fdb_kvdb_t db, int cmd, void *arg)
{
    FDB_ASSERT(db);

    switch (cmd) {
    case FDB_KVDB_CTRL_SET_SEC_SIZE:
        /* this change MUST before database initialization */
        FDB_ASSERT(db->parent.init_ok == false);
        db->parent.sec_size = *(uint32_t *) arg;
        break;
    case FDB_KVDB_CTRL_GET_SEC_SIZE:
        *(uint32_t *) arg = db->parent.sec_size;
        break;
    case FDB_KVDB_CTRL_SET_LOCK:
#if !defined(__ARMCC_VERSION) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
        db->parent.lock = (void (*)(fdb_db_t db)) arg;
#if !defined(__ARMCC_VERSION) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
        break;
    case FDB_KVDB_CTRL_SET_UNLOCK:
#if !defined(__ARMCC_VERSION) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
        db->parent.unlock = (void (*)(fdb_db_t db)) arg;
#if !defined(__ARMCC_VERSION) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
        break;
    case FDB_KVDB_CTRL_SET_FILE_MODE:
#ifdef FDB_USING_FILE_MODE
        /* this change MUST before database initialization */
        FDB_ASSERT(db->parent.init_ok == false);
        db->parent.file_mode = *(bool *) arg;
#else
        FDB_INFO("Error: set file mode Failed. Please defined the FDB_USING_FILE_MODE macro.");
#endif
        break;
    case FDB_KVDB_CTRL_SET_MAX_SIZE:
#ifdef FDB_USING_FILE_MODE
        /* this change MUST before database initialization */
        FDB_ASSERT(db->parent.init_ok == false);
        db->parent.max_size = *(uint32_t *)arg;
#endif
        break;
    case FDB_KVDB_CTRL_SET_NOT_FORMAT:
        /* this change MUST before database initialization */
        FDB_ASSERT(db->parent.init_ok == false);
        db->parent.not_formatable = *(bool *)arg;
        break;
    }
}

/**
 * The KV database initialization.
 *
 * @param db database object
 * @param name database name
 * @param path FAL mode: partition name, file mode: database saved directory path
 * @param default_kv the default KV set @see fdb_default_kv
 * @param user_data user data
 *
 * @return result
 */
fdb_err_t fdb_kvdb_init(fdb_kvdb_t db, const char *name, const char *path, struct fdb_default_kv *default_kv,
        void *user_data)
{
    fdb_err_t result = FDB_NO_ERR;
    struct kvdb_sec_info sector;

#ifdef FDB_KV_USING_CACHE
    size_t i;
#endif

    /* must be aligned with write granularity */
    FDB_ASSERT((FDB_STR_KV_VALUE_MAX_SIZE * 8) % FDB_WRITE_GRAN == 0);

    result = _fdb_init_ex((fdb_db_t) db, name, path, FDB_DB_TYPE_KV, user_data);
    if (result != FDB_NO_ERR) {
        goto __exit;
    }

    /* lock the KVDB */
    db_lock(db);

    db->gc_request = false;
    db->in_recovery_check = false;
    if (default_kv) {
        db->default_kvs = *default_kv;
    } else {
        db->default_kvs.num = 0;
        db->default_kvs.kvs = NULL;
    }

    { /* find the oldest sector address */
        uint32_t sector_oldest_addr = 0;
        fdb_sector_store_status_t last_sector_status = FDB_SECTOR_STORE_UNUSED;

        db_oldest_addr(db) = 0;
        sector_iterator(db, &sector, FDB_SECTOR_STORE_UNUSED, &sector_oldest_addr, &last_sector_status,
                check_oldest_addr_cb, false);
        db_oldest_addr(db) = sector_oldest_addr;
        FDB_DEBUG("The oldest addr is @0x%08" PRIX32 "\n", db_oldest_addr(db));
    }
    /* there is at least one empty sector for GC. */
    FDB_ASSERT((FDB_GC_EMPTY_SEC_THRESHOLD > 0 && FDB_GC_EMPTY_SEC_THRESHOLD < SECTOR_NUM))

#ifdef FDB_KV_USING_CACHE
    for (i = 0; i < FDB_SECTOR_CACHE_TABLE_SIZE; i++) {
        db->sector_cache_table[i].check_ok = false;
        db->sector_cache_table[i].empty_kv = FAILED_ADDR;
        db->sector_cache_table[i].addr = FDB_DATA_UNUSED;
    }
    for (i = 0; i < FDB_KV_CACHE_TABLE_SIZE; i++) {
        db->kv_cache_table[i].addr = FDB_DATA_UNUSED;
    }
#endif /* FDB_KV_USING_CACHE */

    FDB_DEBUG("KVDB size is %" PRIu32 " bytes.\n", db_max_size(db));

    result = _fdb_kv_load(db);

#ifdef FDB_KV_AUTO_UPDATE
    if (result == FDB_NO_ERR) {
        kv_auto_update(db);
    }
#endif

    /* unlock the KVDB */
    db_unlock(db);

__exit:

    _fdb_init_finish((fdb_db_t)db, result);

    return result;
}

/**
 * The KV database initialization.
 *
 * @param db database object
 *
 * @return result
 */
fdb_err_t fdb_kvdb_deinit(fdb_kvdb_t db)
{
    _fdb_deinit((fdb_db_t) db);

    return FDB_NO_ERR;
}

/**
 * The KV database initialization.
 *
 * @param db database object
 * @param itr iterator structure to be initialized
 *
 * @return pointer to the iterator initialized.
 */
fdb_kv_iterator_t fdb_kv_iterator_init(fdb_kvdb_t db, fdb_kv_iterator_t itr)
{
    itr->curr_kv.addr.start = 0;

    /* If iterator statistics is needed */
    itr->iterated_cnt = 0;
    itr->iterated_obj_bytes = 0;
    itr->iterated_value_bytes = 0;
    itr->traversed_len = 0;
    /* Start from sector head */
    itr->sector_addr = db_oldest_addr(db);
    return itr;
}

/**
 * The KV database iterator.
 *
 * @param db database object
 * @param itr the iterator structure
 *
 * @return false if iteration is ended, true if iteration is not ended.
 */
bool fdb_kv_iterate(fdb_kvdb_t db, fdb_kv_iterator_t itr)
{
    struct kvdb_sec_info sector;
    fdb_kv_t kv = &(itr->curr_kv);

    do {
        if (read_sector_info(db, itr->sector_addr, &sector, false) == FDB_NO_ERR) {
            if (sector.status.store == FDB_SECTOR_STORE_USING || sector.status.store == FDB_SECTOR_STORE_FULL) {
                if (kv->addr.start == 0) {
                    kv->addr.start = sector.addr + SECTOR_HDR_DATA_SIZE;
                } else if ((kv->addr.start = get_next_kv_addr(db, &sector, kv)) == FAILED_ADDR) {
                    kv->addr.start = 0;
                    itr->traversed_len += db_sec_size(db);
                    continue;
                }
                do {
                    read_kv(db, kv);
                    if (kv->status == FDB_KV_WRITE && kv->crc_is_ok == true) {
                        /* We got a valid kv here. */
                        /* If iterator statistics is needed */
                        itr->iterated_cnt++;
                        itr->iterated_obj_bytes += kv->len;
                        itr->iterated_value_bytes += kv->value_len;
                        return true;
                    }
                } while ((kv->addr.start = get_next_kv_addr(db, &sector, kv)) != FAILED_ADDR);
            }
        }
        /** Set kv->addr.start to 0 when we get into a new sector so that if we successfully get the next sector info,
         *  the kv->addr.start is set to the new sector.addr + SECTOR_HDR_DATA_SIZE.
         */
        kv->addr.start = 0;
        itr->traversed_len += db_sec_size(db);
    } while ((itr->sector_addr = get_next_sector_addr(db, &sector, itr->traversed_len)) != FAILED_ADDR);
    /* Finally we have iterated all the KVs. */
    return false;
}

/**
 * The database inergrity check
 *
 * @param db database object
 *
 * @return result, FDB_NO_ERR: check OK
 */
fdb_err_t fdb_kvdb_check(fdb_kvdb_t db)
{
    fdb_err_t result = FDB_NO_ERR;
    uint32_t sec_addr, traversed_len = 0;
    struct kvdb_sec_info sector;
    struct fdb_kv kv;

    if (!db_init_ok(db)) {
        FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
        return FDB_INIT_FAILED;
    }

    /* lock the KV cache */
    db_lock(db);

    sec_addr = db_oldest_addr(db);
    /* search all sectors */
    do {
        traversed_len += db_sec_size(db);
        result = read_sector_info(db, sec_addr, &sector, false);
        if (result == FDB_NO_ERR)
        {
            /* sector has KV */
            if (sector.status.store == FDB_SECTOR_STORE_USING || sector.status.store == FDB_SECTOR_STORE_FULL) {
                kv.addr.start = sector.addr + SECTOR_HDR_DATA_SIZE;
                /* search all KV */
                do {
                    result = read_kv(db, &kv);
                } while ((kv.addr.start = get_next_kv_addr(db, &sector, &kv)) != FAILED_ADDR && result == FDB_NO_ERR);
            }
        }
    } while ((sec_addr = get_next_sector_addr(db, &sector, traversed_len)) != FAILED_ADDR && result == FDB_NO_ERR);

    /* unlock the KV cache */
    db_unlock(db);

    return result;
}

#endif /* defined(FDB_USING_KVDB) */