fdb_kvdb.c
65.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
/*
* Copyright (c) 2020, Armink, <armink.ztl@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief KVDB feature.
*
* Key-Value Database feature implement source file.
*/
#include <inttypes.h>
#include <string.h>
#include <flashdb.h>
#include <fdb_low_lvl.h>
#define FDB_LOG_TAG "[kv]"
/* rewrite log prefix */
#undef FDB_LOG_PREFIX2
#define FDB_LOG_PREFIX2() FDB_PRINT("[%s][%s] ", db_name(db), _fdb_db_path((fdb_db_t)db))
#if defined(FDB_USING_KVDB)
#ifndef FDB_WRITE_GRAN
#error "Please configure flash write granularity (in fdb_cfg.h)"
#endif
#if FDB_WRITE_GRAN != 1 && FDB_WRITE_GRAN != 8 && FDB_WRITE_GRAN != 32 && FDB_WRITE_GRAN != 64 && FDB_WRITE_GRAN != 128
#error "the write gran can be only setting as 1, 8, 32, 64 and 128"
#endif
/* magic word(`F`, `D`, `B`, `1`) */
#define SECTOR_MAGIC_WORD 0x30424446
/* magic word(`K`, `V`, `0`, `0`) */
#define KV_MAGIC_WORD 0x3030564B
/* the sector remain threshold before full status */
#ifndef FDB_SEC_REMAIN_THRESHOLD
#define FDB_SEC_REMAIN_THRESHOLD (KV_HDR_DATA_SIZE + FDB_KV_NAME_MAX)
#endif
/* the total remain empty sector threshold before GC */
#ifndef FDB_GC_EMPTY_SEC_THRESHOLD
#define FDB_GC_EMPTY_SEC_THRESHOLD 1
#endif
/* the string KV value buffer size for legacy fdb_get_kv(db, ) function */
#ifndef FDB_STR_KV_VALUE_MAX_SIZE
#define FDB_STR_KV_VALUE_MAX_SIZE 128
#endif
#if FDB_KV_CACHE_TABLE_SIZE > 0xFFFF
#error "The KV cache table size must less than 0xFFFF"
#endif
/* the sector is not combined value */
#if (FDB_BYTE_ERASED == 0xFF)
#define SECTOR_NOT_COMBINED 0xFFFFFFFF
#define SECTOR_COMBINED 0x00000000
#else
#define SECTOR_NOT_COMBINED 0x00000000
#define SECTOR_COMBINED 0xFFFFFFFF
#endif
/* the next address is get failed */
#define FAILED_ADDR 0xFFFFFFFF
#define KV_STATUS_TABLE_SIZE FDB_STATUS_TABLE_SIZE(FDB_KV_STATUS_NUM)
#define SECTOR_NUM (db_max_size(db) / db_sec_size(db))
#define SECTOR_HDR_DATA_SIZE (FDB_WG_ALIGN(sizeof(struct sector_hdr_data)))
#define SECTOR_STORE_OFFSET ((unsigned long)(&((struct sector_hdr_data *)0)->status_table.store))
#define SECTOR_DIRTY_OFFSET ((unsigned long)(&((struct sector_hdr_data *)0)->status_table.dirty))
#define SECTOR_MAGIC_OFFSET ((unsigned long)(&((struct sector_hdr_data *)0)->magic))
#define KV_HDR_DATA_SIZE (FDB_WG_ALIGN(sizeof(struct kv_hdr_data)))
#define KV_MAGIC_OFFSET ((unsigned long)(&((struct kv_hdr_data *)0)->magic))
#define KV_LEN_OFFSET ((unsigned long)(&((struct kv_hdr_data *)0)->len))
#define KV_NAME_LEN_OFFSET ((unsigned long)(&((struct kv_hdr_data *)0)->name_len))
#define db_name(db) (((fdb_db_t)db)->name)
#define db_init_ok(db) (((fdb_db_t)db)->init_ok)
#define db_sec_size(db) (((fdb_db_t)db)->sec_size)
#define db_max_size(db) (((fdb_db_t)db)->max_size)
#define db_oldest_addr(db) (((fdb_db_t)db)->oldest_addr)
#define db_lock(db) \
do { \
if (((fdb_db_t)db)->lock) ((fdb_db_t)db)->lock((fdb_db_t)db); \
} while(0);
#define db_unlock(db) \
do { \
if (((fdb_db_t)db)->unlock) ((fdb_db_t)db)->unlock((fdb_db_t)db); \
} while(0);
#define VER_NUM_KV_NAME "__ver_num__"
struct sector_hdr_data {
struct {
uint8_t store[FDB_STORE_STATUS_TABLE_SIZE]; /**< sector store status @see fdb_sector_store_status_t */
uint8_t dirty[FDB_DIRTY_STATUS_TABLE_SIZE]; /**< sector dirty status @see fdb_sector_dirty_status_t */
} status_table;
uint32_t magic; /**< magic word(`E`, `F`, `4`, `0`) */
uint32_t combined; /**< the combined next sector number, default: not combined */
uint32_t reserved;
#if (FDB_WRITE_GRAN == 64) || (FDB_WRITE_GRAN == 128)
uint8_t padding[4]; /**< align padding for 64bit and 128bit write granularity */
#endif
};
typedef struct sector_hdr_data *sector_hdr_data_t;
struct kv_hdr_data {
uint8_t status_table[KV_STATUS_TABLE_SIZE]; /**< KV node status, @see fdb_kv_status_t */
uint32_t magic; /**< magic word(`K`, `V`, `0`, `0`) */
uint32_t len; /**< KV node total length (header + name + value), must align by FDB_WRITE_GRAN */
uint32_t crc32; /**< KV node crc32(name_len + data_len + name + value) */
uint8_t name_len; /**< name length */
uint32_t value_len; /**< value length */
#if (FDB_WRITE_GRAN == 64)
uint8_t padding[4]; /**< align padding for 64bit write granularity */
#endif
#if (FDB_WRITE_GRAN == 128)
uint8_t padding[12]; /**< align padding for 128bit write granularity */
#endif
};
typedef struct kv_hdr_data *kv_hdr_data_t;
struct alloc_kv_cb_args {
fdb_kvdb_t db;
size_t kv_size;
uint32_t *empty_kv;
};
struct gc_cb_args {
fdb_kvdb_t db;
size_t cur_free_size;
size_t setting_free_size;
uint32_t traversed_len;
};
static void gc_collect(fdb_kvdb_t db);
static void gc_collect_by_free_size(fdb_kvdb_t db, size_t free_size);
#ifdef FDB_KV_USING_CACHE
static void update_sector_cache(fdb_kvdb_t db, kv_sec_info_t sector)
{
size_t i, empty_index = FDB_SECTOR_CACHE_TABLE_SIZE;
for (i = 0; i < FDB_SECTOR_CACHE_TABLE_SIZE; i++) {
/* update the sector empty_addr in cache */
if (db->sector_cache_table[i].addr == sector->addr) {
if (sector->check_ok) {
memcpy(&db->sector_cache_table[i], sector, sizeof(struct kvdb_sec_info));
} else {
db->sector_cache_table[i].addr = FDB_DATA_UNUSED;
}
return;
} else if (db->sector_cache_table[i].addr == FDB_DATA_UNUSED) {
empty_index = i;
}
}
/* add the sector empty_addr to cache */
if (sector->check_ok && empty_index < FDB_SECTOR_CACHE_TABLE_SIZE) {
memcpy(&db->sector_cache_table[empty_index], sector, sizeof(struct kvdb_sec_info));
}
}
/*
* Get sector info from cache. It's return true when cache is hit.
*/
static kv_sec_info_t get_sector_from_cache(fdb_kvdb_t db, uint32_t sec_addr)
{
size_t i;
for (i = 0; i < FDB_SECTOR_CACHE_TABLE_SIZE; i++) {
if (db->sector_cache_table[i].addr == sec_addr) {
return &db->sector_cache_table[i];
}
}
return NULL;
}
static void update_sector_empty_addr_cache(fdb_kvdb_t db, uint32_t sec_addr, uint32_t empty_addr)
{
kv_sec_info_t sector = get_sector_from_cache(db, sec_addr);
if (sector) {
sector->empty_kv = empty_addr;
sector->remain = db_sec_size(db) - (sector->empty_kv - sector->addr);
}
}
static void update_sector_status_store_cache(fdb_kvdb_t db, uint32_t sec_addr, fdb_sector_store_status_t stauts)
{
kv_sec_info_t sector = get_sector_from_cache(db, sec_addr);
if (sector) {
sector->status.store = stauts;
}
}
static void update_kv_cache(fdb_kvdb_t db, const char *name, size_t name_len, uint32_t addr)
{
size_t i, empty_index = FDB_KV_CACHE_TABLE_SIZE, min_activity_index = FDB_KV_CACHE_TABLE_SIZE;
uint16_t name_crc = (uint16_t) (fdb_calc_crc32(0, name, name_len) >> 16), min_activity = 0xFFFF;
for (i = 0; i < FDB_KV_CACHE_TABLE_SIZE; i++) {
if (addr != FDB_DATA_UNUSED) {
/* update the KV address in cache */
if (db->kv_cache_table[i].name_crc == name_crc) {
db->kv_cache_table[i].addr = addr;
return;
} else if ((db->kv_cache_table[i].addr == FDB_DATA_UNUSED) && (empty_index == FDB_KV_CACHE_TABLE_SIZE)) {
empty_index = i;
} else if (db->kv_cache_table[i].addr != FDB_DATA_UNUSED) {
if (db->kv_cache_table[i].active > 0) {
db->kv_cache_table[i].active--;
}
if (db->kv_cache_table[i].active < min_activity) {
min_activity_index = i;
min_activity = db->kv_cache_table[i].active;
}
}
} else if (db->kv_cache_table[i].name_crc == name_crc) {
/* delete the KV */
db->kv_cache_table[i].addr = FDB_DATA_UNUSED;
db->kv_cache_table[i].active = 0;
return;
}
}
/* add the KV to cache, using LRU (Least Recently Used) like algorithm */
if (empty_index < FDB_KV_CACHE_TABLE_SIZE) {
db->kv_cache_table[empty_index].addr = addr;
db->kv_cache_table[empty_index].name_crc = name_crc;
db->kv_cache_table[empty_index].active = FDB_KV_CACHE_TABLE_SIZE;
} else if (min_activity_index < FDB_KV_CACHE_TABLE_SIZE) {
db->kv_cache_table[min_activity_index].addr = addr;
db->kv_cache_table[min_activity_index].name_crc = name_crc;
db->kv_cache_table[min_activity_index].active = FDB_KV_CACHE_TABLE_SIZE;
}
}
/*
* Get KV info from cache. It's return true when cache is hit.
*/
static bool get_kv_from_cache(fdb_kvdb_t db, const char *name, size_t name_len, uint32_t *addr)
{
size_t i;
uint16_t name_crc = (uint16_t) (fdb_calc_crc32(0, name, name_len) >> 16);
for (i = 0; i < FDB_KV_CACHE_TABLE_SIZE; i++) {
if ((db->kv_cache_table[i].addr != FDB_DATA_UNUSED) && (db->kv_cache_table[i].name_crc == name_crc)) {
char saved_name[FDB_KV_NAME_MAX] = { 0 };
/* read the KV name in flash */
_fdb_flash_read((fdb_db_t)db, db->kv_cache_table[i].addr + KV_HDR_DATA_SIZE, (uint32_t *) saved_name, FDB_KV_NAME_MAX);
if (!strncmp(name, saved_name, name_len)) {
*addr = db->kv_cache_table[i].addr;
if (db->kv_cache_table[i].active >= 0xFFFF - FDB_KV_CACHE_TABLE_SIZE) {
db->kv_cache_table[i].active = 0xFFFF;
} else {
db->kv_cache_table[i].active += FDB_KV_CACHE_TABLE_SIZE;
}
return true;
}
}
}
return false;
}
#endif /* FDB_KV_USING_CACHE */
/*
* find the next KV address by magic word on the flash
*/
static uint32_t find_next_kv_addr(fdb_kvdb_t db, uint32_t start, uint32_t end)
{
uint8_t buf[32];
uint32_t start_bak = start, i;
uint32_t magic;
#ifdef FDB_KV_USING_CACHE
kv_sec_info_t sector;
sector = get_sector_from_cache(db, FDB_ALIGN_DOWN(start, db_sec_size(db)));
if (sector && start == sector->empty_kv) {
return FAILED_ADDR;
}
#endif /* FDB_KV_USING_CACHE */
for (; start < end && start + sizeof(buf) < end; start += (sizeof(buf) - sizeof(uint32_t))) {
if (_fdb_flash_read((fdb_db_t)db, start, (uint32_t *) buf, sizeof(buf)) != FDB_NO_ERR)
return FAILED_ADDR;
for (i = 0; i < sizeof(buf) - sizeof(uint32_t) && start + i < end; i++) {
#ifndef FDB_BIG_ENDIAN /* Little Endian Order */
magic = buf[i] + (buf[i + 1] << 8) + (buf[i + 2] << 16) + (buf[i + 3] << 24);
#else /* Big Endian Order */
magic = buf[i + 3] + (buf[i + 2] << 8) + (buf[i + 1] << 16) + (buf[i] << 24);
#endif
if (magic == KV_MAGIC_WORD && (start + i - KV_MAGIC_OFFSET) >= start_bak) {
return start + i - KV_MAGIC_OFFSET;
}
}
}
return FAILED_ADDR;
}
static uint32_t get_next_kv_addr(fdb_kvdb_t db, kv_sec_info_t sector, fdb_kv_t pre_kv)
{
uint32_t addr = FAILED_ADDR;
if (sector->status.store == FDB_SECTOR_STORE_EMPTY) {
return FAILED_ADDR;
}
if (pre_kv->addr.start == FAILED_ADDR) {
/* the first KV address */
addr = sector->addr + SECTOR_HDR_DATA_SIZE;
} else {
if (pre_kv->addr.start <= sector->addr + db_sec_size(db)) {
if (pre_kv->crc_is_ok) {
addr = pre_kv->addr.start + pre_kv->len;
} else {
/* when pre_kv CRC check failed, maybe the flash has error data
* find_next_kv_addr after pre_kv address */
addr = pre_kv->addr.start + FDB_WG_ALIGN(1);
}
/* check and find next KV address */
addr = find_next_kv_addr(db, addr, sector->addr + db_sec_size(db) - SECTOR_HDR_DATA_SIZE);
if (addr == FAILED_ADDR || addr > sector->addr + db_sec_size(db) || pre_kv->len == 0) {
//TODO Sector continuous mode
return FAILED_ADDR;
}
} else {
/* no KV */
return FAILED_ADDR;
}
}
return addr;
}
static fdb_err_t read_kv(fdb_kvdb_t db, fdb_kv_t kv)
{
struct kv_hdr_data kv_hdr;
uint8_t buf[32];
uint32_t calc_crc32 = 0, crc_data_len, kv_name_addr;
fdb_err_t result = FDB_NO_ERR;
size_t len, size;
/* read KV header raw data */
_fdb_flash_read((fdb_db_t)db, kv->addr.start, (uint32_t *)&kv_hdr, sizeof(struct kv_hdr_data));
kv->status = (fdb_kv_status_t) _fdb_get_status(kv_hdr.status_table, FDB_KV_STATUS_NUM);
kv->len = kv_hdr.len;
if (kv->len == UINT32_MAX || kv->len > db_max_size(db) || kv->len < KV_HDR_DATA_SIZE) {
/* the KV length was not write, so reserved the info for current KV */
kv->len = KV_HDR_DATA_SIZE;
if (kv->status != FDB_KV_ERR_HDR) {
kv->status = FDB_KV_ERR_HDR;
FDB_INFO("Error: The KV @0x%08" PRIX32 " length has an error.\n", kv->addr.start);
_fdb_write_status((fdb_db_t)db, kv->addr.start, kv_hdr.status_table, FDB_KV_STATUS_NUM, FDB_KV_ERR_HDR, true);
}
kv->crc_is_ok = false;
return FDB_READ_ERR;
} else if (kv->len > db_sec_size(db) - SECTOR_HDR_DATA_SIZE && kv->len < db_max_size(db)) {
//TODO Sector continuous mode, or the write length is not written completely
}
/* CRC32 data len(header.name_len + header.value_len + name + value), using sizeof(uint32_t) for compatible V1.x */
calc_crc32 = fdb_calc_crc32(calc_crc32, &kv_hdr.name_len, sizeof(uint32_t));
calc_crc32 = fdb_calc_crc32(calc_crc32, &kv_hdr.value_len, sizeof(uint32_t));
crc_data_len = kv->len - KV_HDR_DATA_SIZE;
/* calculate the CRC32 value */
for (len = 0, size = 0; len < crc_data_len; len += size) {
if (len + sizeof(buf) < crc_data_len) {
size = sizeof(buf);
} else {
size = crc_data_len - len;
}
_fdb_flash_read((fdb_db_t)db, kv->addr.start + KV_HDR_DATA_SIZE + len, (uint32_t *) buf, FDB_WG_ALIGN(size));
calc_crc32 = fdb_calc_crc32(calc_crc32, buf, size);
}
/* check CRC32 */
if (calc_crc32 != kv_hdr.crc32) {
size_t name_len = kv_hdr.name_len > FDB_KV_NAME_MAX ? FDB_KV_NAME_MAX : kv_hdr.name_len;
kv->crc_is_ok = false;
result = FDB_READ_ERR;
/* try read the KV name, maybe read name has error */
kv_name_addr = kv->addr.start + KV_HDR_DATA_SIZE;
_fdb_flash_read((fdb_db_t)db, kv_name_addr, (uint32_t *)kv->name, FDB_WG_ALIGN(name_len));
FDB_INFO("Error: Read the KV (%.*s@0x%08" PRIX32 ") CRC32 check failed!\n", name_len, kv->name, kv->addr.start);
} else {
kv->crc_is_ok = true;
/* the name is behind aligned KV header */
kv_name_addr = kv->addr.start + KV_HDR_DATA_SIZE;
_fdb_flash_read((fdb_db_t)db, kv_name_addr, (uint32_t *) kv->name, FDB_WG_ALIGN(kv_hdr.name_len));
/* the value is behind aligned name */
kv->addr.value = kv_name_addr + FDB_WG_ALIGN(kv_hdr.name_len);
kv->value_len = kv_hdr.value_len;
kv->name_len = kv_hdr.name_len;
if (kv_hdr.name_len >= sizeof(kv->name) / sizeof(kv->name[0])) {
kv_hdr.name_len = sizeof(kv->name) / sizeof(kv->name[0]) - 1;
}
kv->name[kv_hdr.name_len] = '\0';
}
return result;
}
static fdb_err_t read_sector_info(fdb_kvdb_t db, uint32_t addr, kv_sec_info_t sector, bool traversal)
{
fdb_err_t result = FDB_NO_ERR;
struct sector_hdr_data sec_hdr = { 0 };
FDB_ASSERT(addr % db_sec_size(db) == 0);
FDB_ASSERT(sector);
#ifdef FDB_KV_USING_CACHE
kv_sec_info_t sector_cache = get_sector_from_cache(db, addr);
if (sector_cache && ((!traversal) || (traversal && sector_cache->empty_kv != FAILED_ADDR))) {
memcpy(sector, sector_cache, sizeof(struct kvdb_sec_info));
return result;
}
#endif /* FDB_KV_USING_CACHE */
/* read sector header raw data */
_fdb_flash_read((fdb_db_t)db, addr, (uint32_t *)&sec_hdr, sizeof(struct sector_hdr_data));
sector->status.store = FDB_SECTOR_STORE_UNUSED;
sector->status.dirty = FDB_SECTOR_DIRTY_UNUSED;
sector->addr = addr;
sector->magic = sec_hdr.magic;
/* check magic word and combined value */
if (sector->magic != SECTOR_MAGIC_WORD ||
(sec_hdr.combined != SECTOR_NOT_COMBINED && sec_hdr.combined != SECTOR_COMBINED)) {
sector->check_ok = false;
sector->combined = SECTOR_NOT_COMBINED;
return FDB_INIT_FAILED;
}
sector->check_ok = true;
/* get other sector info */
sector->combined = sec_hdr.combined;
sector->status.store = (fdb_sector_store_status_t) _fdb_get_status(sec_hdr.status_table.store, FDB_SECTOR_STORE_STATUS_NUM);
sector->status.dirty = (fdb_sector_dirty_status_t) _fdb_get_status(sec_hdr.status_table.dirty, FDB_SECTOR_DIRTY_STATUS_NUM);
/* traversal all KV and calculate the remain space size */
if (traversal) {
sector->remain = 0;
sector->empty_kv = sector->addr + SECTOR_HDR_DATA_SIZE;
if (sector->status.store == FDB_SECTOR_STORE_EMPTY) {
sector->remain = db_sec_size(db) - SECTOR_HDR_DATA_SIZE;
}
else if (sector->status.store == FDB_SECTOR_STORE_USING) {
struct fdb_kv kv_obj;
sector->remain = db_sec_size(db) - SECTOR_HDR_DATA_SIZE;
kv_obj.addr.start = sector->addr + SECTOR_HDR_DATA_SIZE;
do {
read_kv(db, &kv_obj);
if (!kv_obj.crc_is_ok) {
if (kv_obj.status != FDB_KV_PRE_WRITE && kv_obj.status != FDB_KV_ERR_HDR) {
sector->remain = 0;
result = FDB_READ_ERR;
break;
}
}
sector->empty_kv += kv_obj.len;
sector->remain -= kv_obj.len;
} while ((kv_obj.addr.start = get_next_kv_addr(db, sector, &kv_obj)) != FAILED_ADDR);
/* check the empty KV address by read continue 0xFF on flash */
{
uint32_t ff_addr;
ff_addr = _fdb_continue_ff_addr((fdb_db_t)db, sector->empty_kv, sector->addr + db_sec_size(db));
/* check the flash data is clean */
if (sector->empty_kv != ff_addr) {
/* update the sector information */
sector->empty_kv = ff_addr;
sector->remain = db_sec_size(db) - (ff_addr - sector->addr);
}
}
}
#ifdef FDB_KV_USING_CACHE
update_sector_cache(db, sector);
} else {
kv_sec_info_t sector_cache = get_sector_from_cache(db, sector->addr);
if (!sector_cache) {
sector->empty_kv = FAILED_ADDR;
sector->remain = 0;
update_sector_cache(db, sector);
}
#endif
}
return result;
}
static uint32_t get_next_sector_addr(fdb_kvdb_t db, kv_sec_info_t pre_sec, uint32_t traversed_len)
{
uint32_t cur_block_size;
if (pre_sec->combined == SECTOR_NOT_COMBINED) {
cur_block_size = db_sec_size(db);
} else {
cur_block_size = pre_sec->combined * db_sec_size(db);
}
if (traversed_len + cur_block_size <= db_max_size(db)) {
/* if reach to the end, roll back to the first sector */
if (pre_sec->addr + cur_block_size < db_max_size(db)) {
return pre_sec->addr + cur_block_size;
} else {
/* the next sector is on the top of the database */
return 0;
}
} else {
/* finished */
return FAILED_ADDR;
}
}
static void kv_iterator(fdb_kvdb_t db, fdb_kv_t kv, void *arg1, void *arg2,
bool (*callback)(fdb_kv_t kv, void *arg1, void *arg2))
{
struct kvdb_sec_info sector;
uint32_t sec_addr, traversed_len = 0;
sec_addr = db_oldest_addr(db);
/* search all sectors */
do {
traversed_len += db_sec_size(db);
if (read_sector_info(db, sec_addr, §or, false) != FDB_NO_ERR) {
continue;
}
if (callback == NULL) {
continue;
}
/* sector has KV */
if (sector.status.store == FDB_SECTOR_STORE_USING || sector.status.store == FDB_SECTOR_STORE_FULL) {
kv->addr.start = sector.addr + SECTOR_HDR_DATA_SIZE;
/* search all KV */
do {
read_kv(db, kv);
/* iterator is interrupted when callback return true */
if (callback(kv, arg1, arg2)) {
return;
}
} while ((kv->addr.start = get_next_kv_addr(db, §or, kv)) != FAILED_ADDR);
}
} while ((sec_addr = get_next_sector_addr(db, §or, traversed_len)) != FAILED_ADDR);
}
static bool find_kv_cb(fdb_kv_t kv, void *arg1, void *arg2)
{
const char *key = arg1;
bool *find_ok = arg2;
size_t key_len = strlen(key);
if (key_len != kv->name_len) {
return false;
}
/* check KV */
if (kv->crc_is_ok && kv->status == FDB_KV_WRITE && !strncmp(kv->name, key, key_len)) {
*find_ok = true;
return true;
}
return false;
}
static bool find_kv_no_cache(fdb_kvdb_t db, const char *key, fdb_kv_t kv)
{
bool find_ok = false;
kv_iterator(db, kv, (void *)key, &find_ok, find_kv_cb);
return find_ok;
}
static bool find_kv(fdb_kvdb_t db, const char *key, fdb_kv_t kv)
{
bool find_ok = false;
#ifdef FDB_KV_USING_CACHE
size_t key_len = strlen(key);
if (get_kv_from_cache(db, key, key_len, &kv->addr.start)) {
read_kv(db, kv);
return true;
}
#endif /* FDB_KV_USING_CACHE */
find_ok = find_kv_no_cache(db, key, kv);
#ifdef FDB_KV_USING_CACHE
if (find_ok) {
update_kv_cache(db, key, key_len, kv->addr.start);
}
#endif /* FDB_KV_USING_CACHE */
return find_ok;
}
static bool fdb_is_str(uint8_t *value, size_t len)
{
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
size_t i;
for (i = 0; i < len; i++) {
if (!__is_print(value[i])) {
return false;
}
}
return true;
}
static size_t get_kv(fdb_kvdb_t db, const char *key, void *value_buf, size_t buf_len, size_t *value_len)
{
struct fdb_kv kv;
size_t read_len = 0;
if (find_kv(db, key, &kv)) {
if (value_len) {
*value_len = kv.value_len;
}
if (buf_len > kv.value_len) {
read_len = kv.value_len;
} else {
read_len = buf_len;
}
if (value_buf){
_fdb_flash_read((fdb_db_t)db, kv.addr.value, (uint32_t *) value_buf, read_len);
}
} else if (value_len) {
*value_len = 0;
}
return read_len;
}
/**
* Get a KV object by key name
*
* @param db database object
* @param key KV name
* @param kv KV object
*
* @return KV object when is not NULL
*/
fdb_kv_t fdb_kv_get_obj(fdb_kvdb_t db, const char *key, fdb_kv_t kv)
{
bool find_ok = false;
if (!db_init_ok(db)) {
FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
return 0;
}
/* lock the KV cache */
db_lock(db);
find_ok = find_kv(db, key, kv);
/* unlock the KV cache */
db_unlock(db);
return find_ok ? kv : NULL;
}
/**
* Convert the KV object to blob object
*
* @param kv KV object
* @param blob blob object
*
* @return new blob object
*/
fdb_blob_t fdb_kv_to_blob(fdb_kv_t kv, fdb_blob_t blob)
{
blob->saved.meta_addr = kv->addr.start;
blob->saved.addr = kv->addr.value;
blob->saved.len = kv->value_len;
return blob;
}
/**
* Get a blob KV value by key name.
*
* @param db database object
* @param key KV name
* @param blob blob object
*
* @return the actually get size on successful
*/
size_t fdb_kv_get_blob(fdb_kvdb_t db, const char *key, fdb_blob_t blob)
{
size_t read_len = 0;
if (!db_init_ok(db)) {
FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
return 0;
}
/* lock the KV cache */
db_lock(db);
read_len = get_kv(db, key, blob->buf, blob->size, &blob->saved.len);
/* unlock the KV cache */
db_unlock(db);
return read_len;
}
/**
* Get an KV value by key name.
*
* @note this function is NOT supported reentrant
* @note this function is DEPRECATED
*
* @param db database object
* @param key KV name
*
* @return value
*/
char *fdb_kv_get(fdb_kvdb_t db, const char *key)
{
static char value[FDB_STR_KV_VALUE_MAX_SIZE + 1];
size_t get_size;
struct fdb_blob blob;
if ((get_size = fdb_kv_get_blob(db, key, fdb_blob_make(&blob, value, FDB_STR_KV_VALUE_MAX_SIZE))) > 0) {
/* the return value must be string */
if (fdb_is_str((uint8_t *)value, get_size)) {
value[get_size] = '\0';
return value;
} else if (blob.saved.len > FDB_STR_KV_VALUE_MAX_SIZE) {
FDB_INFO("Warning: The default string KV value buffer length (%" PRIdLEAST16 ") is too less (%" PRIu32 ").\n", FDB_STR_KV_VALUE_MAX_SIZE,
(uint32_t)blob.saved.len);
} else {
FDB_INFO("Warning: The KV value isn't string. Could not be returned\n");
return NULL;
}
}
return NULL;
}
static fdb_err_t write_kv_hdr(fdb_kvdb_t db, uint32_t addr, kv_hdr_data_t kv_hdr)
{
fdb_err_t result = FDB_NO_ERR;
/* write the status will by write granularity */
result = _fdb_write_status((fdb_db_t)db, addr, kv_hdr->status_table, FDB_KV_STATUS_NUM, FDB_KV_PRE_WRITE, false);
if (result != FDB_NO_ERR) {
return result;
}
/* write other header data */
result = _fdb_flash_write((fdb_db_t)db, addr + KV_MAGIC_OFFSET, &kv_hdr->magic, sizeof(struct kv_hdr_data) - KV_MAGIC_OFFSET, false);
return result;
}
static fdb_err_t format_sector(fdb_kvdb_t db, uint32_t addr, uint32_t combined_value)
{
fdb_err_t result = FDB_NO_ERR;
struct sector_hdr_data sec_hdr = { 0 };
FDB_ASSERT(addr % db_sec_size(db) == 0);
result = _fdb_flash_erase((fdb_db_t)db, addr, db_sec_size(db));
if (result == FDB_NO_ERR) {
/* initialize the header data */
memset(&sec_hdr, FDB_BYTE_ERASED, sizeof(struct sector_hdr_data));
#if (FDB_WRITE_GRAN == 1)
_fdb_set_status(sec_hdr.status_table.store, FDB_SECTOR_STORE_STATUS_NUM, FDB_SECTOR_STORE_EMPTY);
_fdb_set_status(sec_hdr.status_table.dirty, FDB_SECTOR_DIRTY_STATUS_NUM, FDB_SECTOR_DIRTY_FALSE);
sec_hdr.magic = SECTOR_MAGIC_WORD;
sec_hdr.combined = combined_value;
sec_hdr.reserved = FDB_DATA_UNUSED;
/* save the header */
result = _fdb_flash_write((fdb_db_t)db, addr, (uint32_t *)&sec_hdr, SECTOR_HDR_DATA_SIZE, true);
#else // seperate the whole "sec_hdr" program to serval sinle program operation to prevent re-program issue on STM32L4xx or
// other MCU internal flash
/* write the sector store status */
_fdb_write_status((fdb_db_t)db,
addr + SECTOR_STORE_OFFSET,
sec_hdr.status_table.store,
FDB_SECTOR_STORE_STATUS_NUM,
FDB_SECTOR_STORE_EMPTY,
true);
/* write the sector dirty status */
_fdb_write_status((fdb_db_t)db,
addr + SECTOR_DIRTY_OFFSET,
sec_hdr.status_table.dirty,
FDB_SECTOR_DIRTY_STATUS_NUM,
FDB_SECTOR_DIRTY_FALSE,
true);
/* write the magic word and combined next sector number */
sec_hdr.magic = SECTOR_MAGIC_WORD;
sec_hdr.combined = combined_value;
sec_hdr.reserved = FDB_DATA_UNUSED;
result = _fdb_flash_write((fdb_db_t)db,
addr + SECTOR_MAGIC_OFFSET,
(void *)(&(sec_hdr.magic)),
(sizeof(struct sector_hdr_data) - SECTOR_MAGIC_OFFSET),
true);
#endif
#ifdef FDB_KV_USING_CACHE
{
struct kvdb_sec_info sector = {.addr = addr, .check_ok = false, .empty_kv = FAILED_ADDR };
/* delete the sector cache */
update_sector_cache(db, §or);
}
#endif /* FDB_KV_USING_CACHE */
}
return result;
}
static fdb_err_t update_sec_status(fdb_kvdb_t db, kv_sec_info_t sector, size_t new_kv_len, bool *is_full)
{
uint8_t status_table[FDB_STORE_STATUS_TABLE_SIZE];
fdb_err_t result = FDB_NO_ERR;
/* change the current sector status */
if (sector->status.store == FDB_SECTOR_STORE_EMPTY) {
/* change the sector status to using */
result = _fdb_write_status((fdb_db_t)db, sector->addr, status_table, FDB_SECTOR_STORE_STATUS_NUM, FDB_SECTOR_STORE_USING, true);
#ifdef FDB_KV_USING_CACHE
update_sector_status_store_cache(db, sector->addr, FDB_SECTOR_STORE_USING);
#endif /* FDB_KV_USING_CACHE */
} else if (sector->status.store == FDB_SECTOR_STORE_USING) {
/* check remain size */
if (sector->remain < FDB_SEC_REMAIN_THRESHOLD || sector->remain - new_kv_len < FDB_SEC_REMAIN_THRESHOLD) {
/* change the sector status to full */
result = _fdb_write_status((fdb_db_t)db, sector->addr, status_table, FDB_SECTOR_STORE_STATUS_NUM, FDB_SECTOR_STORE_FULL, true);
#ifdef FDB_KV_USING_CACHE
update_sector_status_store_cache(db, sector->addr, FDB_SECTOR_STORE_FULL);
#endif /* FDB_KV_USING_CACHE */
if (is_full) {
*is_full = true;
}
} else if (is_full) {
*is_full = false;
}
}
return result;
}
static void sector_iterator(fdb_kvdb_t db, kv_sec_info_t sector, fdb_sector_store_status_t status, void *arg1, void *arg2,
bool (*callback)(kv_sec_info_t sector, void *arg1, void *arg2), bool traversal_kv)
{
uint32_t sec_addr, traversed_len = 0;
/* search all sectors */
sec_addr = db_oldest_addr(db);
do {
traversed_len += db_sec_size(db);
read_sector_info(db, sec_addr, sector, false);
if (status == FDB_SECTOR_STORE_UNUSED || status == sector->status.store) {
if (traversal_kv) {
read_sector_info(db, sec_addr, sector, true);
}
/* iterator is interrupted when callback return true */
if (callback && callback(sector, arg1, arg2)) {
return;
}
}
} while ((sec_addr = get_next_sector_addr(db, sector, traversed_len)) != FAILED_ADDR);
}
static bool sector_statistics_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
size_t *empty_sector = arg1, *using_sector = arg2;
if (sector->check_ok && sector->status.store == FDB_SECTOR_STORE_EMPTY) {
(*empty_sector)++;
} else if (sector->check_ok && sector->status.store == FDB_SECTOR_STORE_USING) {
(*using_sector)++;
}
return false;
}
static bool alloc_kv_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
struct alloc_kv_cb_args *arg = arg1;
/* 1. sector has space
* 2. the NO dirty sector
* 3. the dirty sector only when the gc_request is false */
if (sector->check_ok && sector->remain > arg->kv_size + FDB_SEC_REMAIN_THRESHOLD
&& ((sector->status.dirty == FDB_SECTOR_DIRTY_FALSE)
|| (sector->status.dirty == FDB_SECTOR_DIRTY_TRUE && !arg->db->gc_request))) {
*(arg->empty_kv) = sector->empty_kv;
return true;
}
return false;
}
static uint32_t alloc_kv(fdb_kvdb_t db, kv_sec_info_t sector, size_t kv_size)
{
uint32_t empty_kv = FAILED_ADDR;
size_t empty_sector = 0, using_sector = 0;
struct alloc_kv_cb_args arg = {db, kv_size, &empty_kv};
/* sector status statistics */
sector_iterator(db, sector, FDB_SECTOR_STORE_UNUSED, &empty_sector, &using_sector, sector_statistics_cb, false);
if (using_sector > 0) {
/* alloc the KV from the using status sector first */
sector_iterator(db, sector, FDB_SECTOR_STORE_USING, &arg, NULL, alloc_kv_cb, true);
}
if (empty_sector > 0 && empty_kv == FAILED_ADDR) {
if (empty_sector > FDB_GC_EMPTY_SEC_THRESHOLD || db->gc_request) {
sector_iterator(db, sector, FDB_SECTOR_STORE_EMPTY, &arg, NULL, alloc_kv_cb, true);
} else {
/* no space for new KV now will GC and retry */
FDB_DEBUG("Trigger a GC check after alloc KV failed.\n");
db->gc_request = true;
}
}
return empty_kv;
}
static fdb_err_t del_kv(fdb_kvdb_t db, const char *key, fdb_kv_t old_kv, bool complete_del)
{
fdb_err_t result = FDB_NO_ERR;
uint32_t dirty_status_addr;
struct fdb_kv kv = { FDB_KV_UNUSED };
#if (KV_STATUS_TABLE_SIZE >= FDB_DIRTY_STATUS_TABLE_SIZE)
uint8_t status_table[KV_STATUS_TABLE_SIZE];
#else
uint8_t status_table[DIRTY_STATUS_TABLE_SIZE];
#endif
/* need find KV */
if (!old_kv) {
/* find KV */
if (find_kv(db, key, &kv)) {
old_kv = &kv;
} else {
FDB_DEBUG("Not found '%s' in KV.\n", key);
return FDB_KV_NAME_ERR;
}
}
/* change and save the new status */
if (!complete_del) {
result = _fdb_write_status((fdb_db_t)db, old_kv->addr.start, status_table, FDB_KV_STATUS_NUM, FDB_KV_PRE_DELETE, false);
db->last_is_complete_del = true;
} else {
result = _fdb_write_status((fdb_db_t)db, old_kv->addr.start, status_table, FDB_KV_STATUS_NUM, FDB_KV_DELETED, true);
if (!db->last_is_complete_del && result == FDB_NO_ERR) {
#ifdef FDB_KV_USING_CACHE
/* delete the KV in flash and cache */
if (key != NULL) {
/* when using del_kv(db, key, NULL, true) or del_kv(db, key, kv, true) in fdb_del_kv(db, ) and set_kv(db, ) */
update_kv_cache(db, key, strlen(key), FDB_DATA_UNUSED);
} else if (old_kv != NULL) {
/* when using del_kv(db, NULL, kv, true) in move_kv(db, ) */
update_kv_cache(db, old_kv->name, old_kv->name_len, FDB_DATA_UNUSED);
}
#endif /* FDB_KV_USING_CACHE */
}
db->last_is_complete_del = false;
}
dirty_status_addr = FDB_ALIGN_DOWN(old_kv->addr.start, db_sec_size(db)) + SECTOR_DIRTY_OFFSET;
/* read and change the sector dirty status */
if (result == FDB_NO_ERR
&& _fdb_read_status((fdb_db_t)db, dirty_status_addr, status_table, FDB_SECTOR_DIRTY_STATUS_NUM) == FDB_SECTOR_DIRTY_FALSE) {
result = _fdb_write_status((fdb_db_t)db, dirty_status_addr, status_table, FDB_SECTOR_DIRTY_STATUS_NUM, FDB_SECTOR_DIRTY_TRUE, true);
#ifdef FDB_KV_USING_CACHE
{
kv_sec_info_t sector_cache = get_sector_from_cache(db, FDB_ALIGN_DOWN(old_kv->addr.start, db_sec_size(db)));
if (sector_cache) {
sector_cache->status.dirty = FDB_SECTOR_DIRTY_TRUE;
}
}
#endif /* FDB_KV_USING_CACHE */
}
return result;
}
/*
* move the KV to new space
*/
static fdb_err_t move_kv(fdb_kvdb_t db, fdb_kv_t kv)
{
fdb_err_t result = FDB_NO_ERR;
uint8_t status_table[KV_STATUS_TABLE_SIZE];
uint32_t kv_addr;
struct kvdb_sec_info sector;
/* prepare to delete the current KV */
if (kv->status == FDB_KV_WRITE) {
del_kv(db, NULL, kv, false);
}
if ((kv_addr = alloc_kv(db, §or, kv->len)) != FAILED_ADDR) {
if (db->in_recovery_check && kv->status == FDB_KV_PRE_DELETE) {
struct fdb_kv kv_bak;
char name[FDB_KV_NAME_MAX + 1] = { 0 };
strncpy(name, kv->name, kv->name_len);
/* check the KV in flash is already create success */
if (find_kv_no_cache(db, name, &kv_bak)) {
/* already create success, don't need to duplicate */
result = FDB_NO_ERR;
goto __exit;
}
}
} else {
return FDB_SAVED_FULL;
}
/* start move the KV */
{
uint8_t buf[32];
size_t len, size, kv_len = kv->len;
/* update the new KV sector status first */
update_sec_status(db, §or, kv->len, NULL);
_fdb_write_status((fdb_db_t)db, kv_addr, status_table, FDB_KV_STATUS_NUM, FDB_KV_PRE_WRITE, false);
kv_len -= KV_MAGIC_OFFSET;
for (len = 0, size = 0; len < kv_len; len += size) {
if (len + sizeof(buf) < kv_len) {
size = sizeof(buf);
} else {
size = kv_len - len;
}
_fdb_flash_read((fdb_db_t)db, kv->addr.start + KV_MAGIC_OFFSET + len, (uint32_t *) buf, FDB_WG_ALIGN(size));
result = _fdb_flash_write((fdb_db_t)db, kv_addr + KV_MAGIC_OFFSET + len, (uint32_t *) buf, size, true);
}
_fdb_write_status((fdb_db_t)db, kv_addr, status_table, FDB_KV_STATUS_NUM, FDB_KV_WRITE, true);
#ifdef FDB_KV_USING_CACHE
update_sector_empty_addr_cache(db, FDB_ALIGN_DOWN(kv_addr, db_sec_size(db)),
kv_addr + KV_HDR_DATA_SIZE + FDB_WG_ALIGN(kv->name_len) + FDB_WG_ALIGN(kv->value_len));
update_kv_cache(db, kv->name, kv->name_len, kv_addr);
#endif /* FDB_KV_USING_CACHE */
}
FDB_DEBUG("Moved the KV (%.*s) from 0x%08" PRIX32 " to 0x%08" PRIX32 ".\n", kv->name_len, kv->name, kv->addr.start, kv_addr);
__exit:
del_kv(db, NULL, kv, true);
return result;
}
static uint32_t new_kv(fdb_kvdb_t db, kv_sec_info_t sector, size_t kv_size)
{
bool already_gc = false;
uint32_t empty_kv = FAILED_ADDR;
__retry:
if ((empty_kv = alloc_kv(db, sector, kv_size)) == FAILED_ADDR) {
if (db->gc_request && !already_gc) {
FDB_INFO("Warning: Alloc an KV (size %" PRIu32 ") failed when new KV. Now will GC then retry.\n", (uint32_t)kv_size);
gc_collect_by_free_size(db, kv_size);
already_gc = true;
goto __retry;
} else if (already_gc) {
FDB_INFO("Error: Alloc an KV (size %" PRIuLEAST16 ") failed after GC. KV full.\n", kv_size);
db->gc_request = false;
}
}
return empty_kv;
}
static uint32_t new_kv_ex(fdb_kvdb_t db, kv_sec_info_t sector, size_t key_len, size_t buf_len)
{
size_t kv_len = KV_HDR_DATA_SIZE + FDB_WG_ALIGN(key_len) + FDB_WG_ALIGN(buf_len);
return new_kv(db, sector, kv_len);
}
static bool gc_check_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
size_t *empty_sec = arg1;
if (sector->check_ok) {
*empty_sec = *empty_sec + 1;
}
return false;
}
static bool do_gc(kv_sec_info_t sector, void *arg1, void *arg2)
{
struct fdb_kv kv;
struct gc_cb_args *gc = (struct gc_cb_args *)arg1;
fdb_kvdb_t db = gc->db;
if (sector->check_ok && (sector->status.dirty == FDB_SECTOR_DIRTY_TRUE || sector->status.dirty == FDB_SECTOR_DIRTY_GC)) {
uint8_t status_table[FDB_DIRTY_STATUS_TABLE_SIZE];
/* change the sector status to GC */
_fdb_write_status((fdb_db_t)db, sector->addr + SECTOR_DIRTY_OFFSET, status_table, FDB_SECTOR_DIRTY_STATUS_NUM, FDB_SECTOR_DIRTY_GC, true);
/* search all KV */
kv.addr.start = sector->addr + SECTOR_HDR_DATA_SIZE;
do {
read_kv(db, &kv);
if (kv.crc_is_ok && (kv.status == FDB_KV_WRITE || kv.status == FDB_KV_PRE_DELETE)) {
/* move the KV to new space */
if (move_kv(db, &kv) != FDB_NO_ERR) {
FDB_INFO("Error: Moved the KV (%.*s) for GC failed.\n", kv.name_len, kv.name);
}
}
} while ((kv.addr.start = get_next_kv_addr(db, sector, &kv)) != FAILED_ADDR);
format_sector(db, sector->addr, SECTOR_NOT_COMBINED);
gc->cur_free_size += db_sec_size(db) - SECTOR_HDR_DATA_SIZE;
FDB_DEBUG("Collect a sector @0x%08" PRIX32 "\n", sector->addr);
/* update oldest_addr for next GC sector format */
db_oldest_addr(db) = get_next_sector_addr(db, sector, 0);
if (gc->cur_free_size >= gc->setting_free_size)
return true;
}
return false;
}
static void gc_collect_by_free_size(fdb_kvdb_t db, size_t free_size)
{
struct kvdb_sec_info sector;
size_t empty_sec = 0;
struct gc_cb_args arg = { db, 0, free_size, 0 };
/* GC check the empty sector number */
sector_iterator(db, §or, FDB_SECTOR_STORE_EMPTY, &empty_sec, NULL, gc_check_cb, false);
/* do GC collect */
FDB_DEBUG("The remain empty sector is %" PRIu32 ", GC threshold is %" PRIdLEAST16 ".\n", (uint32_t)empty_sec, FDB_GC_EMPTY_SEC_THRESHOLD);
if (empty_sec <= FDB_GC_EMPTY_SEC_THRESHOLD) {
sector_iterator(db, §or, FDB_SECTOR_STORE_UNUSED, &arg, NULL, do_gc, false);
}
db->gc_request = false;
}
/*
* The GC will be triggered on the following scene:
* 1. alloc an KV when the flash not has enough space
* 2. write an KV then the flash not has enough space
*/
static void gc_collect(fdb_kvdb_t db)
{
gc_collect_by_free_size(db, db_max_size(db));
}
static fdb_err_t align_write(fdb_kvdb_t db, uint32_t addr, const uint32_t *buf, size_t size)
{
fdb_err_t result = FDB_NO_ERR;
size_t align_remain;
#if (FDB_WRITE_GRAN / 8 > 0)
uint8_t align_data[FDB_WRITE_GRAN / 8];
size_t align_data_size = sizeof(align_data);
#else
/* For compatibility with C89 */
uint8_t align_data_u8, *align_data = &align_data_u8;
size_t align_data_size = 1;
#endif
memset(align_data, FDB_BYTE_ERASED, align_data_size);
result = _fdb_flash_write((fdb_db_t) db, addr, buf, FDB_WG_ALIGN_DOWN(size), false);
align_remain = size - FDB_WG_ALIGN_DOWN(size);
if (result == FDB_NO_ERR && align_remain) {
memcpy(align_data, (uint8_t *) buf + FDB_WG_ALIGN_DOWN(size), align_remain);
result = _fdb_flash_write((fdb_db_t) db, addr + FDB_WG_ALIGN_DOWN(size), (uint32_t *) align_data,
align_data_size, false);
}
return result;
}
static fdb_err_t create_kv_blob(fdb_kvdb_t db, kv_sec_info_t sector, const char *key, const void *value, size_t len)
{
fdb_err_t result = FDB_NO_ERR;
struct kv_hdr_data kv_hdr;
bool is_full = false;
uint32_t kv_addr = sector->empty_kv;
if (strlen(key) > FDB_KV_NAME_MAX) {
FDB_INFO("Error: The KV name length is more than %d\n", FDB_KV_NAME_MAX);
return FDB_KV_NAME_ERR;
}
memset(&kv_hdr, FDB_BYTE_ERASED, sizeof(struct kv_hdr_data));
kv_hdr.magic = KV_MAGIC_WORD;
kv_hdr.name_len = strlen(key);
kv_hdr.value_len = len;
kv_hdr.len = KV_HDR_DATA_SIZE + FDB_WG_ALIGN(kv_hdr.name_len) + FDB_WG_ALIGN(kv_hdr.value_len);
if (kv_hdr.len > db_sec_size(db) - SECTOR_HDR_DATA_SIZE) {
FDB_INFO("Error: The KV size is too big\n");
return FDB_SAVED_FULL;
}
if (kv_addr != FAILED_ADDR || (kv_addr = new_kv(db, sector, kv_hdr.len)) != FAILED_ADDR) {
size_t align_remain;
/* update the sector status */
if (result == FDB_NO_ERR) {
result = update_sec_status(db, sector, kv_hdr.len, &is_full);
}
if (result == FDB_NO_ERR) {
uint8_t ff = FDB_BYTE_ERASED;
/* start calculate CRC32 */
kv_hdr.crc32 = 0;
/* CRC32(header.name_len + header.value_len + name + value), using sizeof(uint32_t) for compatible V1.x */
kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, &kv_hdr.name_len, sizeof(uint32_t));
kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, &kv_hdr.value_len, sizeof(uint32_t));
kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, key, kv_hdr.name_len);
align_remain = FDB_WG_ALIGN(kv_hdr.name_len) - kv_hdr.name_len;
while (align_remain--) {
kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, &ff, 1);
}
kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, value, kv_hdr.value_len);
align_remain = FDB_WG_ALIGN(kv_hdr.value_len) - kv_hdr.value_len;
while (align_remain--) {
kv_hdr.crc32 = fdb_calc_crc32(kv_hdr.crc32, &ff, 1);
}
/* write KV header data */
result = write_kv_hdr(db, kv_addr, &kv_hdr);
}
/* write key name */
if (result == FDB_NO_ERR) {
result = align_write(db, kv_addr + KV_HDR_DATA_SIZE, (uint32_t *) key, kv_hdr.name_len);
#ifdef FDB_KV_USING_CACHE
if (!is_full) {
update_sector_empty_addr_cache(db, sector->addr,
kv_addr + KV_HDR_DATA_SIZE + FDB_WG_ALIGN(kv_hdr.name_len) + FDB_WG_ALIGN(kv_hdr.value_len));
}
update_kv_cache(db, key, kv_hdr.name_len, kv_addr);
#endif /* FDB_KV_USING_CACHE */
}
/* write value */
if (result == FDB_NO_ERR) {
result = align_write(db, kv_addr + KV_HDR_DATA_SIZE + FDB_WG_ALIGN(kv_hdr.name_len), value,
kv_hdr.value_len);
}
/* change the KV status to KV_WRITE */
if (result == FDB_NO_ERR) {
result = _fdb_write_status((fdb_db_t) db, kv_addr, kv_hdr.status_table, FDB_KV_STATUS_NUM, FDB_KV_WRITE,
true);
}
/* trigger GC collect when current sector is full */
if (result == FDB_NO_ERR && is_full) {
FDB_DEBUG("Trigger a GC check after created KV.\n");
db->gc_request = true;
}
} else {
result = FDB_SAVED_FULL;
}
return result;
}
/**
* Delete an KV.
*
* @param db database object
* @param key KV name
*
* @return result
*/
fdb_err_t fdb_kv_del(fdb_kvdb_t db, const char *key)
{
fdb_err_t result = FDB_NO_ERR;
if (!db_init_ok(db)) {
FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
return FDB_INIT_FAILED;
}
/* lock the KV cache */
db_lock(db);
result = del_kv(db, key, NULL, true);
/* unlock the KV cache */
db_unlock(db);
return result;
}
static fdb_err_t set_kv(fdb_kvdb_t db, const char *key, const void *value_buf, size_t buf_len)
{
fdb_err_t result = FDB_NO_ERR;
bool kv_is_found = false;
if (value_buf == NULL) {
result = del_kv(db, key, NULL, true);
} else {
/* make sure the flash has enough space */
if (new_kv_ex(db, &db->cur_sector, strlen(key), buf_len) == FAILED_ADDR) {
return FDB_SAVED_FULL;
}
kv_is_found = find_kv(db, key, &db->cur_kv);
/* prepare to delete the old KV */
if (kv_is_found) {
result = del_kv(db, key, &db->cur_kv, false);
}
/* create the new KV */
if (result == FDB_NO_ERR) {
result = create_kv_blob(db, &db->cur_sector, key, value_buf, buf_len);
}
/* delete the old KV */
if (kv_is_found && result == FDB_NO_ERR) {
result = del_kv(db, key, &db->cur_kv, true);
}
/* process the GC after set KV */
if (db->gc_request) {
gc_collect_by_free_size(db, KV_HDR_DATA_SIZE + FDB_WG_ALIGN(strlen(key)) + FDB_WG_ALIGN(buf_len));
}
}
return result;
}
/**
* Set a blob KV. If it blob value is NULL, delete it.
* If not find it in flash, then create it.
*
* @param db database object
* @param key KV name
* @param blob blob object
*
* @return result
*/
fdb_err_t fdb_kv_set_blob(fdb_kvdb_t db, const char *key, fdb_blob_t blob)
{
fdb_err_t result = FDB_NO_ERR;
if (!db_init_ok(db)) {
FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
return FDB_INIT_FAILED;
}
/* lock the KV cache */
db_lock(db);
result = set_kv(db, key, blob->buf, blob->size);
/* unlock the KV cache */
db_unlock(db);
return result;
}
/**
* Set a string KV. If it value is NULL, delete it.
* If not find it in flash, then create it.
*
* @param db database object
* @param key KV name
* @param value KV value
*
* @return result
*/
fdb_err_t fdb_kv_set(fdb_kvdb_t db, const char *key, const char *value)
{
struct fdb_blob blob;
return fdb_kv_set_blob(db, key, fdb_blob_make(&blob, value, strlen(value)));
}
/**
* recovery all KV to default.
*
* @param db database object
* @return result
*/
fdb_err_t fdb_kv_set_default(fdb_kvdb_t db)
{
fdb_err_t result = FDB_NO_ERR;
uint32_t addr, i, value_len;
struct kvdb_sec_info sector;
/* lock the KV cache */
db_lock(db);
/* format all sectors */
for (addr = 0; addr < db_max_size(db); addr += db_sec_size(db)) {
result = format_sector(db, addr, SECTOR_NOT_COMBINED);
if (result != FDB_NO_ERR) {
goto __exit;
}
}
/* create default KV */
for (i = 0; i < db->default_kvs.num; i++) {
/* It seems to be a string when value length is 0.
* This mechanism is for compatibility with older versions (less then V4.0). */
if (db->default_kvs.kvs[i].value_len == 0) {
value_len = strlen(db->default_kvs.kvs[i].value);
} else {
value_len = db->default_kvs.kvs[i].value_len;
}
sector.empty_kv = FAILED_ADDR;
create_kv_blob(db, §or, db->default_kvs.kvs[i].key, db->default_kvs.kvs[i].value, value_len);
if (result != FDB_NO_ERR) {
goto __exit;
}
}
__exit:
db_oldest_addr(db) = 0;
/* unlock the KV cache */
db_unlock(db);
return result;
}
static bool print_kv_cb(fdb_kv_t kv, void *arg1, void *arg2)
{
bool value_is_str = true, print_value = false;
size_t *using_size = arg1;
fdb_kvdb_t db = arg2;
if (kv->crc_is_ok) {
/* calculate the total using flash size */
*using_size += kv->len;
/* check KV */
if (kv->status == FDB_KV_WRITE) {
FDB_PRINT("%.*s=", kv->name_len, kv->name);
if (kv->value_len < FDB_STR_KV_VALUE_MAX_SIZE ) {
uint8_t buf[32];
size_t len, size;
__reload:
/* check the value is string */
for (len = 0, size = 0; len < kv->value_len; len += size) {
if (len + sizeof(buf) < kv->value_len) {
size = sizeof(buf);
} else {
size = kv->value_len - len;
}
_fdb_flash_read((fdb_db_t)db, kv->addr.value + len, (uint32_t *) buf, FDB_WG_ALIGN(size));
if (print_value) {
FDB_PRINT("%.*s", (int)size, buf);
} else if (!fdb_is_str(buf, size)) {
value_is_str = false;
break;
}
}
} else {
value_is_str = false;
}
if (value_is_str && !print_value) {
print_value = true;
goto __reload;
} else if (!value_is_str) {
FDB_PRINT("blob @0x%08" PRIX32 " %" PRIu32 "bytes", kv->addr.value, kv->value_len);
}
FDB_PRINT("\n");
}
}
return false;
}
/**
* Print all KV.
*
* @param db database object
*/
void fdb_kv_print(fdb_kvdb_t db)
{
struct fdb_kv kv;
size_t using_size = 0;
if (!db_init_ok(db)) {
FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
return;
}
/* lock the KV cache */
db_lock(db);
kv_iterator(db, &kv, &using_size, db, print_kv_cb);
FDB_PRINT("\nmode: next generation\n");
FDB_PRINT("size: %" PRIu32 "/%" PRIu32 " bytes.\n", (uint32_t)using_size + ((SECTOR_NUM - FDB_GC_EMPTY_SEC_THRESHOLD) * SECTOR_HDR_DATA_SIZE),
db_max_size(db) - db_sec_size(db) * FDB_GC_EMPTY_SEC_THRESHOLD);
/* unlock the KV cache */
db_unlock(db);
}
#ifdef FDB_KV_AUTO_UPDATE
/*
* Auto update KV to latest default when current setting version number is changed.
*/
static void kv_auto_update(fdb_kvdb_t db)
{
size_t saved_ver_num, setting_ver_num = db->ver_num;
if (get_kv(db, VER_NUM_KV_NAME, &saved_ver_num, sizeof(size_t), NULL) > 0) {
/* check version number */
if (saved_ver_num != setting_ver_num) {
size_t i, value_len;
FDB_DEBUG("Update the KV from version %zu to %zu.\n", saved_ver_num, setting_ver_num);
for (i = 0; i < db->default_kvs.num; i++) {
/* add a new KV when it's not found */
if (!find_kv(db, db->default_kvs.kvs[i].key, &db->cur_kv)) {
/* It seems to be a string when value length is 0.
* This mechanism is for compatibility with older versions (less then V4.0). */
if (db->default_kvs.kvs[i].value_len == 0) {
value_len = strlen(db->default_kvs.kvs[i].value);
} else {
value_len = db->default_kvs.kvs[i].value_len;
}
db->cur_sector.empty_kv = FAILED_ADDR;
create_kv_blob(db, &db->cur_sector, db->default_kvs.kvs[i].key, db->default_kvs.kvs[i].value, value_len);
}
}
} else {
/* version number not changed now return */
return;
}
}
set_kv(db, VER_NUM_KV_NAME, &setting_ver_num, sizeof(size_t));
}
#endif /* FDB_KV_AUTO_UPDATE */
static bool check_oldest_addr_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
uint32_t *sector_oldest_addr = (uint32_t *) arg1;
fdb_sector_store_status_t *last_sector_status = (fdb_sector_store_status_t *)arg2;
/* The oldest address is 0 by default.
* The new oldest sector is found when sector status change from empty to full or using.
*/
if (*last_sector_status == FDB_SECTOR_STORE_EMPTY
&& (sector->status.store == FDB_SECTOR_STORE_FULL || sector->status.store == FDB_SECTOR_STORE_USING)) {
*sector_oldest_addr = sector->addr;
}
*last_sector_status = sector->status.store;
return false;
}
static bool check_sec_hdr_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
if (!sector->check_ok) {
size_t *failed_count = arg1;
fdb_kvdb_t db = arg2;
(*failed_count) ++;
if (db->parent.not_formatable) {
return true;
} else {
FDB_INFO("Sector header info is incorrect. Auto format this sector (0x%08" PRIX32 ").\n", sector->addr);
format_sector(db, sector->addr, SECTOR_NOT_COMBINED);
}
}
return false;
}
static bool check_and_recovery_gc_cb(kv_sec_info_t sector, void *arg1, void *arg2)
{
fdb_kvdb_t db = arg1;
if (sector->check_ok && sector->status.dirty == FDB_SECTOR_DIRTY_GC) {
/* make sure the GC request flag to true */
db->gc_request = true;
/* resume the GC operate */
gc_collect(db);
}
return false;
}
static bool check_and_recovery_kv_cb(fdb_kv_t kv, void *arg1, void *arg2)
{
fdb_kvdb_t db = arg1;
/* recovery the prepare deleted KV */
if (kv->crc_is_ok && kv->status == FDB_KV_PRE_DELETE) {
FDB_INFO("Found an KV (%.*s) which has changed value failed. Now will recovery it.\n", kv->name_len, kv->name);
/* recovery the old KV */
if (move_kv(db, kv) == FDB_NO_ERR) {
FDB_DEBUG("Recovery the KV successful.\n");
} else {
FDB_DEBUG("Warning: Moved an KV (size %" PRIu32 ") failed when recovery. Now will GC then retry.\n", kv->len);
return true;
}
} else if (kv->status == FDB_KV_PRE_WRITE) {
uint8_t status_table[KV_STATUS_TABLE_SIZE];
/* the KV has not write finish, change the status to error */
//TODO Draw the state replacement diagram of exception handling
_fdb_write_status((fdb_db_t)db, kv->addr.start, status_table, FDB_KV_STATUS_NUM, FDB_KV_ERR_HDR, true);
return true;
} else if (kv->crc_is_ok && kv->status == FDB_KV_WRITE) {
#ifdef FDB_KV_USING_CACHE
/* update the cache when first load. If caching is disabled, this step is not performed */
update_kv_cache(db, kv->name, kv->name_len, kv->addr.start);
#endif
}
return false;
}
/**
* Check and load the flash KV.
*
* @return result
*/
static fdb_err_t _fdb_kv_load(fdb_kvdb_t db)
{
fdb_err_t result = FDB_NO_ERR;
struct fdb_kv kv;
struct kvdb_sec_info sector;
size_t check_failed_count = 0;
db->in_recovery_check = true;
/* check all sector header */
sector_iterator(db, §or, FDB_SECTOR_STORE_UNUSED, &check_failed_count, db, check_sec_hdr_cb, false);
if (db->parent.not_formatable && check_failed_count > 0) {
return FDB_READ_ERR;
}
/* all sector header check failed */
if (check_failed_count == SECTOR_NUM) {
FDB_INFO("All sector header is incorrect. Set it to default.\n");
fdb_kv_set_default(db);
}
/* check all sector header for recovery GC */
sector_iterator(db, §or, FDB_SECTOR_STORE_UNUSED, db, NULL, check_and_recovery_gc_cb, false);
__retry:
/* check all KV for recovery */
kv_iterator(db, &kv, db, NULL, check_and_recovery_kv_cb);
if (db->gc_request) {
gc_collect(db);
goto __retry;
}
db->in_recovery_check = false;
return result;
}
/**
* This function will get or set some options of the database
*
* @param db database object
* @param cmd the control command
* @param arg the argument
*/
void fdb_kvdb_control(fdb_kvdb_t db, int cmd, void *arg)
{
FDB_ASSERT(db);
switch (cmd) {
case FDB_KVDB_CTRL_SET_SEC_SIZE:
/* this change MUST before database initialization */
FDB_ASSERT(db->parent.init_ok == false);
db->parent.sec_size = *(uint32_t *) arg;
break;
case FDB_KVDB_CTRL_GET_SEC_SIZE:
*(uint32_t *) arg = db->parent.sec_size;
break;
case FDB_KVDB_CTRL_SET_LOCK:
#if !defined(__ARMCC_VERSION) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
db->parent.lock = (void (*)(fdb_db_t db)) arg;
#if !defined(__ARMCC_VERSION) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
break;
case FDB_KVDB_CTRL_SET_UNLOCK:
#if !defined(__ARMCC_VERSION) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
db->parent.unlock = (void (*)(fdb_db_t db)) arg;
#if !defined(__ARMCC_VERSION) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
break;
case FDB_KVDB_CTRL_SET_FILE_MODE:
#ifdef FDB_USING_FILE_MODE
/* this change MUST before database initialization */
FDB_ASSERT(db->parent.init_ok == false);
db->parent.file_mode = *(bool *) arg;
#else
FDB_INFO("Error: set file mode Failed. Please defined the FDB_USING_FILE_MODE macro.");
#endif
break;
case FDB_KVDB_CTRL_SET_MAX_SIZE:
#ifdef FDB_USING_FILE_MODE
/* this change MUST before database initialization */
FDB_ASSERT(db->parent.init_ok == false);
db->parent.max_size = *(uint32_t *)arg;
#endif
break;
case FDB_KVDB_CTRL_SET_NOT_FORMAT:
/* this change MUST before database initialization */
FDB_ASSERT(db->parent.init_ok == false);
db->parent.not_formatable = *(bool *)arg;
break;
}
}
/**
* The KV database initialization.
*
* @param db database object
* @param name database name
* @param path FAL mode: partition name, file mode: database saved directory path
* @param default_kv the default KV set @see fdb_default_kv
* @param user_data user data
*
* @return result
*/
fdb_err_t fdb_kvdb_init(fdb_kvdb_t db, const char *name, const char *path, struct fdb_default_kv *default_kv,
void *user_data)
{
fdb_err_t result = FDB_NO_ERR;
struct kvdb_sec_info sector;
#ifdef FDB_KV_USING_CACHE
size_t i;
#endif
/* must be aligned with write granularity */
FDB_ASSERT((FDB_STR_KV_VALUE_MAX_SIZE * 8) % FDB_WRITE_GRAN == 0);
result = _fdb_init_ex((fdb_db_t) db, name, path, FDB_DB_TYPE_KV, user_data);
if (result != FDB_NO_ERR) {
goto __exit;
}
/* lock the KVDB */
db_lock(db);
db->gc_request = false;
db->in_recovery_check = false;
if (default_kv) {
db->default_kvs = *default_kv;
} else {
db->default_kvs.num = 0;
db->default_kvs.kvs = NULL;
}
{ /* find the oldest sector address */
uint32_t sector_oldest_addr = 0;
fdb_sector_store_status_t last_sector_status = FDB_SECTOR_STORE_UNUSED;
db_oldest_addr(db) = 0;
sector_iterator(db, §or, FDB_SECTOR_STORE_UNUSED, §or_oldest_addr, &last_sector_status,
check_oldest_addr_cb, false);
db_oldest_addr(db) = sector_oldest_addr;
FDB_DEBUG("The oldest addr is @0x%08" PRIX32 "\n", db_oldest_addr(db));
}
/* there is at least one empty sector for GC. */
FDB_ASSERT((FDB_GC_EMPTY_SEC_THRESHOLD > 0 && FDB_GC_EMPTY_SEC_THRESHOLD < SECTOR_NUM))
#ifdef FDB_KV_USING_CACHE
for (i = 0; i < FDB_SECTOR_CACHE_TABLE_SIZE; i++) {
db->sector_cache_table[i].check_ok = false;
db->sector_cache_table[i].empty_kv = FAILED_ADDR;
db->sector_cache_table[i].addr = FDB_DATA_UNUSED;
}
for (i = 0; i < FDB_KV_CACHE_TABLE_SIZE; i++) {
db->kv_cache_table[i].addr = FDB_DATA_UNUSED;
}
#endif /* FDB_KV_USING_CACHE */
FDB_DEBUG("KVDB size is %" PRIu32 " bytes.\n", db_max_size(db));
result = _fdb_kv_load(db);
#ifdef FDB_KV_AUTO_UPDATE
if (result == FDB_NO_ERR) {
kv_auto_update(db);
}
#endif
/* unlock the KVDB */
db_unlock(db);
__exit:
_fdb_init_finish((fdb_db_t)db, result);
return result;
}
/**
* The KV database initialization.
*
* @param db database object
*
* @return result
*/
fdb_err_t fdb_kvdb_deinit(fdb_kvdb_t db)
{
_fdb_deinit((fdb_db_t) db);
return FDB_NO_ERR;
}
/**
* The KV database initialization.
*
* @param db database object
* @param itr iterator structure to be initialized
*
* @return pointer to the iterator initialized.
*/
fdb_kv_iterator_t fdb_kv_iterator_init(fdb_kvdb_t db, fdb_kv_iterator_t itr)
{
itr->curr_kv.addr.start = 0;
/* If iterator statistics is needed */
itr->iterated_cnt = 0;
itr->iterated_obj_bytes = 0;
itr->iterated_value_bytes = 0;
itr->traversed_len = 0;
/* Start from sector head */
itr->sector_addr = db_oldest_addr(db);
return itr;
}
/**
* The KV database iterator.
*
* @param db database object
* @param itr the iterator structure
*
* @return false if iteration is ended, true if iteration is not ended.
*/
bool fdb_kv_iterate(fdb_kvdb_t db, fdb_kv_iterator_t itr)
{
struct kvdb_sec_info sector;
fdb_kv_t kv = &(itr->curr_kv);
do {
if (read_sector_info(db, itr->sector_addr, §or, false) == FDB_NO_ERR) {
if (sector.status.store == FDB_SECTOR_STORE_USING || sector.status.store == FDB_SECTOR_STORE_FULL) {
if (kv->addr.start == 0) {
kv->addr.start = sector.addr + SECTOR_HDR_DATA_SIZE;
} else if ((kv->addr.start = get_next_kv_addr(db, §or, kv)) == FAILED_ADDR) {
kv->addr.start = 0;
itr->traversed_len += db_sec_size(db);
continue;
}
do {
read_kv(db, kv);
if (kv->status == FDB_KV_WRITE && kv->crc_is_ok == true) {
/* We got a valid kv here. */
/* If iterator statistics is needed */
itr->iterated_cnt++;
itr->iterated_obj_bytes += kv->len;
itr->iterated_value_bytes += kv->value_len;
return true;
}
} while ((kv->addr.start = get_next_kv_addr(db, §or, kv)) != FAILED_ADDR);
}
}
/** Set kv->addr.start to 0 when we get into a new sector so that if we successfully get the next sector info,
* the kv->addr.start is set to the new sector.addr + SECTOR_HDR_DATA_SIZE.
*/
kv->addr.start = 0;
itr->traversed_len += db_sec_size(db);
} while ((itr->sector_addr = get_next_sector_addr(db, §or, itr->traversed_len)) != FAILED_ADDR);
/* Finally we have iterated all the KVs. */
return false;
}
/**
* The database inergrity check
*
* @param db database object
*
* @return result, FDB_NO_ERR: check OK
*/
fdb_err_t fdb_kvdb_check(fdb_kvdb_t db)
{
fdb_err_t result = FDB_NO_ERR;
uint32_t sec_addr, traversed_len = 0;
struct kvdb_sec_info sector;
struct fdb_kv kv;
if (!db_init_ok(db)) {
FDB_INFO("Error: KV (%s) isn't initialize OK.\n", db_name(db));
return FDB_INIT_FAILED;
}
/* lock the KV cache */
db_lock(db);
sec_addr = db_oldest_addr(db);
/* search all sectors */
do {
traversed_len += db_sec_size(db);
result = read_sector_info(db, sec_addr, §or, false);
if (result == FDB_NO_ERR)
{
/* sector has KV */
if (sector.status.store == FDB_SECTOR_STORE_USING || sector.status.store == FDB_SECTOR_STORE_FULL) {
kv.addr.start = sector.addr + SECTOR_HDR_DATA_SIZE;
/* search all KV */
do {
result = read_kv(db, &kv);
} while ((kv.addr.start = get_next_kv_addr(db, §or, &kv)) != FAILED_ADDR && result == FDB_NO_ERR);
}
}
} while ((sec_addr = get_next_sector_addr(db, §or, traversed_len)) != FAILED_ADDR && result == FDB_NO_ERR);
/* unlock the KV cache */
db_unlock(db);
return result;
}
#endif /* defined(FDB_USING_KVDB) */