PID_Gen.c
14.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
#include "PID_Gen.h"
// #include "stm32f10x.h"
#include "math.h"
// #include "usart.h"
// #include "dma.h"
// #include "gpio.h"
// #include "protocol.h"
// #include "monitor.h"
#define PI 3.14159265f
#define TWO_PI 6.28318531f
#define D2R (PI / 180.0f)
#define R2D (180.0f / PI)
#define _constrain(amt, low, high) ((amt) < (low) ? (low) : ((amt) > (high) ? (high) : (amt)))
/**
* @brief Absolute limiting function, compares the given input with the reference value & limiting difference.
* If the difference between the input and the reference value is greater than the limiting interpolation,
* the reference value + limiting difference is output (the same applies to negative numbers)
* @param input the input need to be process
* @param ref referenve value
* @param err limiting difference
* @return the Limited vaule
*/
static float abs_Limit(float input, float ref, float err)
{
float temp;
temp = input - ref; // calibration Coordinate System - Set the ref to zero
if (fabs(temp) > err) // check the err between input and ref
{
if (temp >= 0.0f) // input bigger than ref
return ref + err; // output the right Limit
else
return ref - err; // output the left Limit
}
return input;
}
/**
* @brief The relative limit function compares a given input to the limit difference.
* If the input is greater than the limit interpolation,
* Output limit difference (the same applies to negative numbers)
* @param input the input need to be process
* @param err limiting difference
* @return
*/
static float rel_Limit(float input, float err)
{
if (fabs(input) > err) // check the err between input and ref
{
if (input >= 0.0f) // input bigger than ref
return err; // output the right Limit
else
return -err; // output the left Limit
}
return input;
}
//========================== Var PID Content =============================
static float Variable_KP(float err, varPID *conf)
{
return conf->KP_a + conf->KP_b * (1 - expf(-conf->KP_c * fabsf(err)));
}
static float Variable_KI(float err, varPID *conf)
{
return conf->KI_a * expf(-conf->KI_c * fabsf(err));
}
static float Variable_KI_Gain(float err, varPID *conf)
{
if (fabsf(err) > conf->KI_e)
{
return 1;
}
else
{
return conf->KI_1 * expf(-conf->KI_0 * fabsf(err));
}
}
static float Variable_KD(float err, varPID *conf)
{
if (conf->KD_a <= conf->KD_b)
{
return 0;
}
return conf->KD_a - conf->KD_b * (1 - expf(-conf->KD_c * fabsf(err)));
}
//========================== Var PID Content==============================
/**
* @brief Init PID : Include init the timer ...
* (It is best to call it just before starting the PID operation)
* @param pid the PID need to be init
*/
void GenPID_Init(GenPID_s *pid)
{
TimeFlash(&pid->time);
}
int GenPID_Set(GenPID_s *pid,GenPID_CONFIG config)
{
memset(pid,0x00,sizeof(GenPID_s));
pid->config = config;
return 0;
}
int GenPID_Set_Needle(GenPID_s *pid,GenPID_CONFIG *config)
{
memset(pid,0x00,sizeof(GenPID_s));
pid->config = *config;
return 0;
}
// float GenPID_Process(GenPID_s *pid, float sv, float cv)
// {
// float ts, err, Ierr, perr;
// float p, i, iadd, d;
// float output;
// err = sv - cv; // get the err
// // get the time
// ts = TimeFlash(&pid->time);
// // PID parameter transmit DuoWays
// // pid->sv = sv;
// // pid->cv = cv;
// perr = pid->perr;
// //------------------------------------can combine
// // p = pid->kp * err;
// p = Variable_KP(err, &(pid->varPID)) * err;
// // integral = integral_vel_prev + pid_vel_I * Ts * 0.5 * (error + error_vel_prev);
// // i = pid->pi + pid->ki * ts * 0.5f * (err + pid->perr);
// iadd = Variable_KI_Gain(err, &(pid->varPID)) * Variable_KI(err, &(pid->varPID)) * ts * 0.5f * (err + perr);
// // i = abs_Limit(i , 0 , pid->intLimit);
// if (fabs(pid->pout) > pid->outputLimit)
// {
// if ((pid->pi > 0) && (iadd > 0))
// {
// iadd = pid->pi;
// }
// else
// {
// if ((pid->pi < 0) < (iadd < 0))
// {
// iadd = pid->pi;
// }
// }
// }
// i = pid->pi + iadd;
// i = _constrain(i, -pid->intLimit, pid->intLimit);
// // i = pid->ki * Ierr;
// // d = pid->kd * (err - perr) / ts; // the kd preformence is not verify
// d = Variable_KD(err, &(pid->varPID)) * (err - perr) / ts;
// output = p + i + d;
// output = rel_Limit(output, pid->outputLimit);
// // PID parameter transmit SingleWay
// pid->cv = cv;
// pid->sv = sv;
// pid->pv = cv;
// // pid->err = err;
// pid->perr = err;
// pid->pi = i;
// pid->pout = output;
// // debug---------------------------------------------------------
// #if PID_DEBUG_SW
// // SIGN1_1_UP;
// // 串口调试发送 - start
// DebugFrameLoad_F(2, p);
// DebugFrameLoad_F(3, i);
// DebugFrameLoad_F(4, d);
// DebugFrameLoad_F(5, (output * D2R));
// DebugFrameLoad_F(6, err);
// DebugFrameLoad_F(7, Ierr);
// DebugFrameLoad_F(8, pid->outputLimit);
// DebugFrameLoad_F(9, pid->varPID.KP_a);
// DebugFrameLoad_F(10, pid->varPID.KP_b);
// DebugFrameLoad_F(11, pid->varPID.KP_c);
// DebugFrameLoad_F(12, pid->varPID.KI_a);
// DebugFrameLoad_F(13, pid->varPID.KI_c);
// DebugFrameLoad_F(14, pid->varPID.KI_e);
// DebugFrameLoad_F(15, pid->varPID.KI_0);
// DebugFrameLoad_F(16, pid->varPID.KI_1);
// DebugFrameLoad_F(17, pid->varPID.KD_a);
// DebugFrameLoad_F(18, pid->varPID.KD_b);
// DebugFrameLoad_F(19, pid->varPID.KD_c);
// #endif
// // debug---------------------------------------------------------
// return output;
// }
// float GenPID_ProcessSTD(GenPID_s *pid, float sv, float cv)
// {
// float ts, err, perr;
// float p, i, iadd, d;
// float output;
// err = sv - cv; // get the err
// // get the time
// ts = TimeFlash(&pid->time);
// perr = pid->perr;
// //------------------------------------can combine
// p = pid->kp * err;
// iadd = pid->ki * ts * 0.5 * (err + perr);
// // i = abs_Limit(i , 0 , pid->intLimit);
// if (fabs(pid->pout) >= pid->outputLimit)
// {
// if ((pid->pi > 0) && (iadd > 0))
// {
// iadd = pid->pi;
// }
// else
// {
// if ((pid->pi < 0) < (iadd < 0))
// {
// iadd = pid->pi;
// }
// }
// }
// i = pid->pi + iadd;
// i = _constrain(i, -pid->intLimit, pid->intLimit);
// // i = pid->ki * Ierr;
// d = pid->kd * (err - perr) / ts; // the kd preformence is not verify
// // d = Variable_KD(err, pid->varPID) * (err - perr) / ts;
// output = p + i + d;
// output = rel_Limit(output, pid->outputLimit);
// // PID parameter transmit SingleWay
// pid->cv = cv;
// pid->sv = sv;
// pid->pv = cv;
// // pid->err = err;
// pid->perr = err;
// pid->pi = i;
// pid->pout = output;
// // debug---------------------------------------------------------
// #if PID_DEBUG_SW
// // SIGN1_1_UP;
// // 串口调试发送 - start
// DebugFrameLoad_F(9, p);
// DebugFrameLoad_F(10, i);
// DebugFrameLoad_F(11, d);
// DebugFrameLoad_F(12, output);
// DebugFrameLoad_F(13, err);
// DebugFrameLoad_F(14, iadd);
// // DebugFrameLoad_F(8, pid->outputLimit);
// #endif
// // debug---------------------------------------------------------
// return output;
// }
float GenPID_Process(GenPID_s *pid, float sv, float cv, OBS_GenPID *obs)
{
float Ts = TimeFlash(&(pid->time));
float err = sv - cv;
// u(s) = (P + I/s + Ds)e(s)
// Discrete implementations
// proportional part
// u_p = P *e(k)
float proportional = Variable_KP(err, &(pid->config.varPID)) * err;
// Tustin transform of the integral part
// u_ik = u_ik_1 + I*Ts/2*(ek + ek_1)
float integral = pid->pi + Variable_KI_Gain(err, &(pid->config.varPID)) * Variable_KI(err, &(pid->config.varPID)) * Ts * 0.5f * (err + pid->perr);
// antiwindup - limit the output
integral = _constrain(integral, -pid->config.intLimit, pid->config.intLimit);
// Discrete derivation
// u_dk = D(ek - ek_1)/Ts
float derivative = Variable_KD(err, &(pid->config.varPID)) * (err - pid->perr) / Ts;
// sum all the components
float output = proportional + integral + derivative;
// antiwindup - limit the output variable
output = _constrain(output, -pid->config.outputLimit, pid->config.outputLimit);
// if output ramp defined
if (pid->config.output_ramp > 0)
{
// limit the acceleration by ramping the output
float output_rate = (output - pid->pout) / Ts;
if (output_rate > pid->config.output_ramp)
output = pid->pout + pid->config.output_ramp * Ts;
else if (output_rate < -pid->config.output_ramp)
output = pid->pout - pid->config.output_ramp * Ts;
}
// saving for the next pass
// integral_prev = integral;
pid->pi = integral;
// output_prev = output;
pid->pout = output;
// error_prev = error;
pid->perr = err;
// OBS Aera
if (obs != NULL)
{
obs->p = proportional;
obs->i = integral;
obs->d = derivative;
obs->output = output;
obs->err = err;
obs->pi = pid->pi;
obs->Ts = Ts;
}
return output;
}
float GenPID_ProcessSTD(GenPID_s *pid, float sv, float cv, OBS_GenPID *obs)
{
float Ts = TimeFlash(&(pid->time));
float err = sv - cv;
// u(s) = (P + I/s + Ds)e(s)
// Discrete implementations
// proportional part
// u_p = P *e(k)
float proportional = pid->config.kp * err;
// Tustin transform of the integral part
// u_ik = u_ik_1 + I*Ts/2*(ek + ek_1)
float integral = pid->pi + pid->config.ki * Ts * 0.5f * (err + pid->perr);
// antiwindup - limit the output
integral = _constrain(integral, -pid->config.intLimit, pid->config.intLimit);
// Discrete derivation
// u_dk = D(ek - ek_1)/Ts
float derivative = pid->config.kd * (err - pid->perr) / Ts;
// sum all the components
float output = proportional + integral + derivative;
// antiwindup - limit the output variable
output = _constrain(output, -pid->config.outputLimit, pid->config.outputLimit);
// // if output ramp defined
// if (pid->output_ramp > 0)
// {
// // limit the acceleration by ramping the output
// float output_rate = (output - pid->pout) / Ts;
// if (output_rate > pid->output_ramp)
// output = pid->pout + pid->output_ramp * Ts;
// else if (output_rate < -pid->output_ramp)
// output = pid->pout - pid->output_ramp * Ts;
// }
// saving for the next pass
// integral_prev = integral;
pid->pi = integral;
// output_prev = output;
pid->pout = output;
// error_prev = error;
pid->perr = err;
// OBS Aera
if (obs != NULL)
{
obs->p = proportional;
obs->i = integral;
obs->d = derivative;
obs->output = output;
obs->err = err;
obs->pi = pid->pi;
obs->Ts = Ts;
}
return output;
}
float GenPID_ProcessSTD_LPIn(GenPID_s *pid, float sv, float cv, float cv_LP,OBS_GenPID *obs)
{
float Ts = TimeFlash(&(pid->time));
float err = sv - cv;
float err_LP = sv - cv_LP;
// u(s) = (P + I/s + Ds)e(s)
// Discrete implementations
// proportional part
// u_p = P *e(k)
float proportional = pid->config.kp * err_LP;
// Tustin transform of the integral part
// u_ik = u_ik_1 + I*Ts/2*(ek + ek_1)
float integral = pid->pi + pid->config.ki * Ts * 0.5f * (err + pid->perr);
// antiwindup - limit the output
integral = _constrain(integral, -pid->config.intLimit, pid->config.intLimit);
// Discrete derivation
// u_dk = D(ek - ek_1)/Ts
float derivative = pid->config.kd * (err_LP - pid->perr) / Ts;
// sum all the components
float output = proportional + integral + derivative;
// antiwindup - limit the output variable
output = _constrain(output, -pid->config.outputLimit, pid->config.outputLimit);
// if output ramp defined
if (pid->config.output_ramp > 0)
{
// limit the acceleration by ramping the output
float output_rate = (output - pid->pout) / Ts;
if (output_rate > pid->config.output_ramp)
output = pid->pout + pid->config.output_ramp * Ts;
else if (output_rate < -pid->config.output_ramp)
output = pid->pout - pid->config.output_ramp * Ts;
}
// saving for the next pass
// integral_prev = integral;
pid->pi = integral;
// output_prev = output;
pid->pout = output;
// error_prev = error;
pid->perr = err;
pid->perrLP = err_LP;
// OBS Aera
if (obs != NULL)
{
obs->p = proportional;
obs->i = integral;
obs->d = derivative;
obs->output = output;
obs->err = err;
obs->errLP = err_LP;
obs->pi = pid->pi;
obs->Ts = Ts;
}
return output;
}
float GenPID_ProcessSTD_ErrIN(GenPID_s *pid, float err,OBS_GenPID *obs)
{
float Ts = TimeFlash(&(pid->time));
// u(s) = (P + I/s + Ds)e(s)
// Discrete implementations
// proportional part
// u_p = P *e(k)
float proportional = pid->config.kp * err;
// Tustin transform of the integral part
// u_ik = u_ik_1 + I*Ts/2*(ek + ek_1)
float integral = pid->pi + pid->config.ki * Ts * 0.5f * (err + pid->perr);
// antiwindup - limit the output
integral = _constrain(integral, -pid->config.intLimit, pid->config.intLimit);
// Discrete derivation
// u_dk = D(ek - ek_1)/Ts
float derivative = pid->config.kd * (err - pid->perr) / Ts;
// sum all the components
float output = proportional + integral + derivative;
// antiwindup - limit the output variable
output = _constrain(output, -pid->config.outputLimit, pid->config.outputLimit);
// // if output ramp defined
// if (pid->output_ramp > 0)
// {
// // limit the acceleration by ramping the output
// float output_rate = (output - pid->pout) / Ts;
// if (output_rate > pid->output_ramp)
// output = pid->pout + pid->output_ramp * Ts;
// else if (output_rate < -pid->output_ramp)
// output = pid->pout - pid->output_ramp * Ts;
// }
// saving for the next pass
// integral_prev = integral;
pid->pi = integral;
// output_prev = output;
pid->pout = output;
// error_prev = error;
pid->perr = err;
// OBS Aera
if (obs != NULL)
{
obs->p = proportional;
obs->i = integral;
obs->d = derivative;
obs->output = output;
obs->err = err;
obs->pi = pid->pi;
obs->Ts = Ts;
}
return output;
}