repeated_ptr_field.h 69.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields.  These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers.  RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// This header covers RepeatedPtrField.

// IWYU pragma: private, include "net/proto2/public/repeated_field.h"

#ifndef GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__

#include <utility>

#ifdef _MSC_VER
// This is required for min/max on VS2013 only.
#include <algorithm>
#endif

#include <iterator>
#include <limits>
#include <string>
#include <type_traits>

#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/port.h>
#include <google/protobuf/message_lite.h>


// Must be included last.
#include <google/protobuf/port_def.inc>

#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif

namespace google {
namespace protobuf {

class Message;
class Reflection;

template <typename T>
struct WeakRepeatedPtrField;

namespace internal {

class MergePartialFromCodedStreamHelper;
class SwapFieldHelper;


}  // namespace internal

namespace internal {
template <typename It>
class RepeatedPtrIterator;
template <typename It, typename VoidPtr>
class RepeatedPtrOverPtrsIterator;
}  // namespace internal

namespace internal {

// type-traits helper for RepeatedPtrFieldBase: we only want to invoke
// arena-related "copy if on different arena" behavior if the necessary methods
// exist on the contained type. In particular, we rely on MergeFrom() existing
// as a general proxy for the fact that a copy will work, and we also provide a
// specific override for std::string*.
template <typename T>
struct TypeImplementsMergeBehaviorProbeForMergeFrom {
  typedef char HasMerge;
  typedef long HasNoMerge;

  // We accept either of:
  // - void MergeFrom(const T& other)
  // - bool MergeFrom(const T& other)
  //
  // We mangle these names a bit to avoid compatibility issues in 'unclean'
  // include environments that may have, e.g., "#define test ..." (yes, this
  // exists).
  template <typename U, typename RetType, RetType (U::*)(const U& arg)>
  struct CheckType;
  template <typename U>
  static HasMerge Check(CheckType<U, void, &U::MergeFrom>*);
  template <typename U>
  static HasMerge Check(CheckType<U, bool, &U::MergeFrom>*);
  template <typename U>
  static HasNoMerge Check(...);

  // Resolves to either std::true_type or std::false_type.
  typedef std::integral_constant<bool,
                                 (sizeof(Check<T>(0)) == sizeof(HasMerge))>
      type;
};

template <typename T, typename = void>
struct TypeImplementsMergeBehavior
    : TypeImplementsMergeBehaviorProbeForMergeFrom<T> {};


template <>
struct TypeImplementsMergeBehavior<std::string> {
  typedef std::true_type type;
};

template <typename T>
struct IsMovable
    : std::integral_constant<bool, std::is_move_constructible<T>::value &&
                                       std::is_move_assignable<T>::value> {};

// This is the common base class for RepeatedPtrFields.  It deals only in void*
// pointers.  Users should not use this interface directly.
//
// The methods of this interface correspond to the methods of RepeatedPtrField,
// but may have a template argument called TypeHandler.  Its signature is:
//   class TypeHandler {
//    public:
//     typedef MyType Type;
//     static Type* New();
//     static Type* NewFromPrototype(const Type* prototype,
//                                       Arena* arena);
//     static void Delete(Type*);
//     static void Clear(Type*);
//     static void Merge(const Type& from, Type* to);
//
//     // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
//     static int SpaceUsedLong(const Type&);
//   };
class PROTOBUF_EXPORT RepeatedPtrFieldBase {
 protected:
  constexpr RepeatedPtrFieldBase()
      : arena_(nullptr), current_size_(0), total_size_(0), rep_(nullptr) {}
  explicit RepeatedPtrFieldBase(Arena* arena)
      : arena_(arena), current_size_(0), total_size_(0), rep_(nullptr) {}

  RepeatedPtrFieldBase(const RepeatedPtrFieldBase&) = delete;
  RepeatedPtrFieldBase& operator=(const RepeatedPtrFieldBase&) = delete;

  ~RepeatedPtrFieldBase() {
#ifndef NDEBUG
    // Try to trigger segfault / asan failure in non-opt builds. If arena_
    // lifetime has ended before the destructor.
    if (arena_) (void)arena_->SpaceAllocated();
#endif
  }

  bool empty() const { return current_size_ == 0; }
  int size() const { return current_size_; }
  int Capacity() const { return total_size_; }

  template <typename TypeHandler>
  const typename TypeHandler::Type& at(int index) const {
    GOOGLE_CHECK_GE(index, 0);
    GOOGLE_CHECK_LT(index, current_size_);
    return *cast<TypeHandler>(rep_->elements[index]);
  }

  template <typename TypeHandler>
  typename TypeHandler::Type& at(int index) {
    GOOGLE_CHECK_GE(index, 0);
    GOOGLE_CHECK_LT(index, current_size_);
    return *cast<TypeHandler>(rep_->elements[index]);
  }

  template <typename TypeHandler>
  typename TypeHandler::Type* Mutable(int index) {
    GOOGLE_DCHECK_GE(index, 0);
    GOOGLE_DCHECK_LT(index, current_size_);
    return cast<TypeHandler>(rep_->elements[index]);
  }

  template <typename TypeHandler>
  typename TypeHandler::Type* Add(
      const typename TypeHandler::Type* prototype = nullptr) {
    if (rep_ != nullptr && current_size_ < rep_->allocated_size) {
      return cast<TypeHandler>(rep_->elements[current_size_++]);
    }
    typename TypeHandler::Type* result =
        TypeHandler::NewFromPrototype(prototype, arena_);
    return reinterpret_cast<typename TypeHandler::Type*>(
        AddOutOfLineHelper(result));
  }

  template <
      typename TypeHandler,
      typename std::enable_if<TypeHandler::Movable::value>::type* = nullptr>
  inline void Add(typename TypeHandler::Type&& value) {
    if (rep_ != nullptr && current_size_ < rep_->allocated_size) {
      *cast<TypeHandler>(rep_->elements[current_size_++]) = std::move(value);
      return;
    }
    if (!rep_ || rep_->allocated_size == total_size_) {
      Reserve(total_size_ + 1);
    }
    ++rep_->allocated_size;
    typename TypeHandler::Type* result =
        TypeHandler::New(arena_, std::move(value));
    rep_->elements[current_size_++] = result;
  }

  template <typename TypeHandler>
  void Delete(int index) {
    GOOGLE_DCHECK_GE(index, 0);
    GOOGLE_DCHECK_LT(index, current_size_);
    TypeHandler::Delete(cast<TypeHandler>(rep_->elements[index]), arena_);
  }

  // Must be called from destructor.
  template <typename TypeHandler>
  void Destroy() {
    if (rep_ != nullptr && arena_ == nullptr) {
      int n = rep_->allocated_size;
      void* const* elements = rep_->elements;
      for (int i = 0; i < n; i++) {
        TypeHandler::Delete(cast<TypeHandler>(elements[i]), nullptr);
      }
      const size_t size = total_size_ * sizeof(elements[0]) + kRepHeaderSize;
      internal::SizedDelete(rep_, size);
    }
    rep_ = nullptr;
  }

  bool NeedsDestroy() const { return rep_ != nullptr && arena_ == nullptr; }
  void DestroyProtos();  // implemented in the cc file

 public:
  // The next few methods are public so that they can be called from generated
  // code when implicit weak fields are used, but they should never be called by
  // application code.

  template <typename TypeHandler>
  const typename TypeHandler::Type& Get(int index) const {
    GOOGLE_DCHECK_GE(index, 0);
    GOOGLE_DCHECK_LT(index, current_size_);
    return *cast<TypeHandler>(rep_->elements[index]);
  }

  // Creates and adds an element using the given prototype, without introducing
  // a link-time dependency on the concrete message type. This method is used to
  // implement implicit weak fields. The prototype may be nullptr, in which case
  // an ImplicitWeakMessage will be used as a placeholder.
  MessageLite* AddWeak(const MessageLite* prototype);

  template <typename TypeHandler>
  void Clear() {
    const int n = current_size_;
    GOOGLE_DCHECK_GE(n, 0);
    if (n > 0) {
      void* const* elements = rep_->elements;
      int i = 0;
      do {
        TypeHandler::Clear(cast<TypeHandler>(elements[i++]));
      } while (i < n);
      current_size_ = 0;
    }
  }

  template <typename TypeHandler>
  void MergeFrom(const RepeatedPtrFieldBase& other) {
    // To avoid unnecessary code duplication and reduce binary size, we use a
    // layered approach to implementing MergeFrom(). The toplevel method is
    // templated, so we get a small thunk per concrete message type in the
    // binary. This calls a shared implementation with most of the logic,
    // passing a function pointer to another type-specific piece of code that
    // calls the object-allocate and merge handlers.
    GOOGLE_DCHECK_NE(&other, this);
    if (other.current_size_ == 0) return;
    MergeFromInternal(other,
                      &RepeatedPtrFieldBase::MergeFromInnerLoop<TypeHandler>);
  }

  inline void InternalSwap(RepeatedPtrFieldBase* rhs) {
    GOOGLE_DCHECK(this != rhs);

    // Swap all fields at once.
    auto temp = std::make_tuple(rhs->arena_, rhs->current_size_,
                                rhs->total_size_, rhs->rep_);
    std::tie(rhs->arena_, rhs->current_size_, rhs->total_size_, rhs->rep_) =
        std::make_tuple(arena_, current_size_, total_size_, rep_);
    std::tie(arena_, current_size_, total_size_, rep_) = temp;
  }

 protected:
  template <typename TypeHandler>
  void RemoveLast() {
    GOOGLE_DCHECK_GT(current_size_, 0);
    TypeHandler::Clear(cast<TypeHandler>(rep_->elements[--current_size_]));
  }

  template <typename TypeHandler>
  void CopyFrom(const RepeatedPtrFieldBase& other) {
    if (&other == this) return;
    RepeatedPtrFieldBase::Clear<TypeHandler>();
    RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
  }

  void CloseGap(int start, int num);  // implemented in the cc file

  void Reserve(int new_size);  // implemented in the cc file

  template <typename TypeHandler>
  static inline typename TypeHandler::Type* copy(
      typename TypeHandler::Type* value) {
    auto* new_value = TypeHandler::NewFromPrototype(value, nullptr);
    TypeHandler::Merge(*value, new_value);
    return new_value;
  }

  // Used for constructing iterators.
  void* const* raw_data() const { return rep_ ? rep_->elements : nullptr; }
  void** raw_mutable_data() const {
    return rep_ ? const_cast<void**>(rep_->elements) : nullptr;
  }

  template <typename TypeHandler>
  typename TypeHandler::Type** mutable_data() {
    // TODO(kenton):  Breaks C++ aliasing rules.  We should probably remove this
    //   method entirely.
    return reinterpret_cast<typename TypeHandler::Type**>(raw_mutable_data());
  }

  template <typename TypeHandler>
  const typename TypeHandler::Type* const* data() const {
    // TODO(kenton):  Breaks C++ aliasing rules.  We should probably remove this
    //   method entirely.
    return reinterpret_cast<const typename TypeHandler::Type* const*>(
        raw_data());
  }

  template <typename TypeHandler>
  PROTOBUF_NDEBUG_INLINE void Swap(RepeatedPtrFieldBase* other) {
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
    if (GetOwningArena() != nullptr &&
        GetOwningArena() == other->GetOwningArena())
#else   // PROTOBUF_FORCE_COPY_IN_SWAP
    if (GetOwningArena() == other->GetOwningArena())
#endif  // !PROTOBUF_FORCE_COPY_IN_SWAP
    {
      InternalSwap(other);
    } else {
      SwapFallback<TypeHandler>(other);
    }
  }

  void SwapElements(int index1, int index2) {
    using std::swap;  // enable ADL with fallback
    swap(rep_->elements[index1], rep_->elements[index2]);
  }

  template <typename TypeHandler>
  size_t SpaceUsedExcludingSelfLong() const {
    size_t allocated_bytes = static_cast<size_t>(total_size_) * sizeof(void*);
    if (rep_ != nullptr) {
      for (int i = 0; i < rep_->allocated_size; ++i) {
        allocated_bytes +=
            TypeHandler::SpaceUsedLong(*cast<TypeHandler>(rep_->elements[i]));
      }
      allocated_bytes += kRepHeaderSize;
    }
    return allocated_bytes;
  }

  // Advanced memory management --------------------------------------

  // Like Add(), but if there are no cleared objects to use, returns nullptr.
  template <typename TypeHandler>
  typename TypeHandler::Type* AddFromCleared() {
    if (rep_ != nullptr && current_size_ < rep_->allocated_size) {
      return cast<TypeHandler>(rep_->elements[current_size_++]);
    } else {
      return nullptr;
    }
  }

  template <typename TypeHandler>
  void AddAllocated(typename TypeHandler::Type* value) {
    typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
    AddAllocatedInternal<TypeHandler>(value, t);
  }

  template <typename TypeHandler>
  void UnsafeArenaAddAllocated(typename TypeHandler::Type* value) {
    // Make room for the new pointer.
    if (!rep_ || current_size_ == total_size_) {
      // The array is completely full with no cleared objects, so grow it.
      Reserve(total_size_ + 1);
      ++rep_->allocated_size;
    } else if (rep_->allocated_size == total_size_) {
      // There is no more space in the pointer array because it contains some
      // cleared objects awaiting reuse.  We don't want to grow the array in
      // this case because otherwise a loop calling AddAllocated() followed by
      // Clear() would leak memory.
      TypeHandler::Delete(cast<TypeHandler>(rep_->elements[current_size_]),
                          arena_);
    } else if (current_size_ < rep_->allocated_size) {
      // We have some cleared objects.  We don't care about their order, so we
      // can just move the first one to the end to make space.
      rep_->elements[rep_->allocated_size] = rep_->elements[current_size_];
      ++rep_->allocated_size;
    } else {
      // There are no cleared objects.
      ++rep_->allocated_size;
    }

    rep_->elements[current_size_++] = value;
  }

  template <typename TypeHandler>
  PROTOBUF_NODISCARD typename TypeHandler::Type* ReleaseLast() {
    typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
    return ReleaseLastInternal<TypeHandler>(t);
  }

  // Releases and returns the last element, but does not do out-of-arena copy.
  // Instead, just returns the raw pointer to the contained element in the
  // arena.
  template <typename TypeHandler>
  typename TypeHandler::Type* UnsafeArenaReleaseLast() {
    GOOGLE_DCHECK_GT(current_size_, 0);
    typename TypeHandler::Type* result =
        cast<TypeHandler>(rep_->elements[--current_size_]);
    --rep_->allocated_size;
    if (current_size_ < rep_->allocated_size) {
      // There are cleared elements on the end; replace the removed element
      // with the last allocated element.
      rep_->elements[current_size_] = rep_->elements[rep_->allocated_size];
    }
    return result;
  }

  int ClearedCount() const {
    return rep_ ? (rep_->allocated_size - current_size_) : 0;
  }

  template <typename TypeHandler>
  void AddCleared(typename TypeHandler::Type* value) {
    GOOGLE_DCHECK(GetOwningArena() == nullptr) << "AddCleared() can only be used on a "
                                           "RepeatedPtrField not on an arena.";
    GOOGLE_DCHECK(TypeHandler::GetOwningArena(value) == nullptr)
        << "AddCleared() can only accept values not on an arena.";
    if (!rep_ || rep_->allocated_size == total_size_) {
      Reserve(total_size_ + 1);
    }
    rep_->elements[rep_->allocated_size++] = value;
  }

  template <typename TypeHandler>
  PROTOBUF_NODISCARD typename TypeHandler::Type* ReleaseCleared() {
    GOOGLE_DCHECK(GetOwningArena() == nullptr)
        << "ReleaseCleared() can only be used on a RepeatedPtrField not on "
        << "an arena.";
    GOOGLE_DCHECK(GetOwningArena() == nullptr);
    GOOGLE_DCHECK(rep_ != nullptr);
    GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_);
    return cast<TypeHandler>(rep_->elements[--rep_->allocated_size]);
  }

  template <typename TypeHandler>
  void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type) {
    // AddAllocated version that implements arena-safe copying behavior.
    Arena* element_arena =
        reinterpret_cast<Arena*>(TypeHandler::GetOwningArena(value));
    Arena* arena = GetOwningArena();
    if (arena == element_arena && rep_ && rep_->allocated_size < total_size_) {
      // Fast path: underlying arena representation (tagged pointer) is equal to
      // our arena pointer, and we can add to array without resizing it (at
      // least one slot that is not allocated).
      void** elems = rep_->elements;
      if (current_size_ < rep_->allocated_size) {
        // Make space at [current] by moving first allocated element to end of
        // allocated list.
        elems[rep_->allocated_size] = elems[current_size_];
      }
      elems[current_size_] = value;
      current_size_ = current_size_ + 1;
      rep_->allocated_size = rep_->allocated_size + 1;
    } else {
      AddAllocatedSlowWithCopy<TypeHandler>(value, element_arena, arena);
    }
  }

  template <typename TypeHandler>
  void AddAllocatedInternal(
      // AddAllocated version that does not implement arena-safe copying
      // behavior.
      typename TypeHandler::Type* value, std::false_type) {
    if (rep_ && rep_->allocated_size < total_size_) {
      // Fast path: underlying arena representation (tagged pointer) is equal to
      // our arena pointer, and we can add to array without resizing it (at
      // least one slot that is not allocated).
      void** elems = rep_->elements;
      if (current_size_ < rep_->allocated_size) {
        // Make space at [current] by moving first allocated element to end of
        // allocated list.
        elems[rep_->allocated_size] = elems[current_size_];
      }
      elems[current_size_] = value;
      current_size_ = current_size_ + 1;
      ++rep_->allocated_size;
    } else {
      UnsafeArenaAddAllocated<TypeHandler>(value);
    }
  }

  // Slowpath handles all cases, copying if necessary.
  template <typename TypeHandler>
  PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy(
      // Pass value_arena and my_arena to avoid duplicate virtual call (value)
      // or load (mine).
      typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) {
    // Ensure that either the value is in the same arena, or if not, we do the
    // appropriate thing: Own() it (if it's on heap and we're in an arena) or
    // copy it to our arena/heap (otherwise).
    if (my_arena != nullptr && value_arena == nullptr) {
      my_arena->Own(value);
    } else if (my_arena != value_arena) {
      typename TypeHandler::Type* new_value =
          TypeHandler::NewFromPrototype(value, my_arena);
      TypeHandler::Merge(*value, new_value);
      TypeHandler::Delete(value, value_arena);
      value = new_value;
    }

    UnsafeArenaAddAllocated<TypeHandler>(value);
  }

  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseLastInternal(std::true_type) {
    // ReleaseLast() for types that implement merge/copy behavior.
    // First, release an element.
    typename TypeHandler::Type* result = UnsafeArenaReleaseLast<TypeHandler>();
    // Now perform a copy if we're on an arena.
    Arena* arena = GetOwningArena();

    typename TypeHandler::Type* new_result;
#ifdef PROTOBUF_FORCE_COPY_IN_RELEASE
    new_result = copy<TypeHandler>(result);
    if (arena == nullptr) delete result;
#else   // PROTOBUF_FORCE_COPY_IN_RELEASE
    new_result = (arena == nullptr) ? result : copy<TypeHandler>(result);
#endif  // !PROTOBUF_FORCE_COPY_IN_RELEASE
    return new_result;
  }

  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseLastInternal(std::false_type) {
    // ReleaseLast() for types that *do not* implement merge/copy behavior --
    // this is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if
    // we're on an arena, since the user really should implement the copy
    // operation in this case.
    GOOGLE_DCHECK(GetOwningArena() == nullptr)
        << "ReleaseLast() called on a RepeatedPtrField that is on an arena, "
        << "with a type that does not implement MergeFrom. This is unsafe; "
        << "please implement MergeFrom for your type.";
    return UnsafeArenaReleaseLast<TypeHandler>();
  }

  template <typename TypeHandler>
  PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other) {
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
    GOOGLE_DCHECK(GetOwningArena() == nullptr ||
           other->GetOwningArena() != GetOwningArena());
#else   // PROTOBUF_FORCE_COPY_IN_SWAP
    GOOGLE_DCHECK(other->GetOwningArena() != GetOwningArena());
#endif  // !PROTOBUF_FORCE_COPY_IN_SWAP

    // Copy semantics in this case. We try to improve efficiency by placing the
    // temporary on |other|'s arena so that messages are copied twice rather
    // than three times.
    RepeatedPtrFieldBase temp(other->GetOwningArena());
    temp.MergeFrom<TypeHandler>(*this);
    this->Clear<TypeHandler>();
    this->MergeFrom<TypeHandler>(*other);
    other->InternalSwap(&temp);
    temp.Destroy<TypeHandler>();  // Frees rep_ if `other` had no arena.
  }

  inline Arena* GetArena() const { return arena_; }

 protected:
  inline Arena* GetOwningArena() const { return arena_; }

 private:
  template <typename T> friend class Arena::InternalHelper;

  static constexpr int kInitialSize = 0;
  // A few notes on internal representation:
  //
  // We use an indirected approach, with struct Rep, to keep
  // sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
  // was added; namely, 3 8-byte machine words on x86-64. An instance of Rep is
  // allocated only when the repeated field is non-empty, and it is a
  // dynamically-sized struct (the header is directly followed by elements[]).
  // We place arena_ and current_size_ directly in the object to avoid cache
  // misses due to the indirection, because these fields are checked frequently.
  // Placing all fields directly in the RepeatedPtrFieldBase instance would cost
  // significant performance for memory-sensitive workloads.
  Arena* arena_;
  int current_size_;
  int total_size_;
  struct Rep {
    int allocated_size;
    // Here we declare a huge array as a way of approximating C's "flexible
    // array member" feature without relying on undefined behavior.
    void* elements[(std::numeric_limits<int>::max() - 2 * sizeof(int)) /
                   sizeof(void*)];
  };
  static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
  Rep* rep_;

  template <typename TypeHandler>
  static inline typename TypeHandler::Type* cast(void* element) {
    return reinterpret_cast<typename TypeHandler::Type*>(element);
  }
  template <typename TypeHandler>
  static inline const typename TypeHandler::Type* cast(const void* element) {
    return reinterpret_cast<const typename TypeHandler::Type*>(element);
  }

  // Non-templated inner function to avoid code duplication. Takes a function
  // pointer to the type-specific (templated) inner allocate/merge loop.
  void MergeFromInternal(const RepeatedPtrFieldBase& other,
                         void (RepeatedPtrFieldBase::*inner_loop)(void**,
                                                                  void**, int,
                                                                  int)) {
    // Note: wrapper has already guaranteed that other.rep_ != nullptr here.
    int other_size = other.current_size_;
    void** other_elements = other.rep_->elements;
    void** new_elements = InternalExtend(other_size);
    int allocated_elems = rep_->allocated_size - current_size_;
    (this->*inner_loop)(new_elements, other_elements, other_size,
                        allocated_elems);
    current_size_ += other_size;
    if (rep_->allocated_size < current_size_) {
      rep_->allocated_size = current_size_;
    }
  }

  // Merges other_elems to our_elems.
  template <typename TypeHandler>
  PROTOBUF_NOINLINE void MergeFromInnerLoop(void** our_elems,
                                            void** other_elems, int length,
                                            int already_allocated) {
    if (already_allocated < length) {
      Arena* arena = GetOwningArena();
      typename TypeHandler::Type* elem_prototype =
          reinterpret_cast<typename TypeHandler::Type*>(other_elems[0]);
      for (int i = already_allocated; i < length; i++) {
        // Allocate a new empty element that we'll merge into below
        typename TypeHandler::Type* new_elem =
            TypeHandler::NewFromPrototype(elem_prototype, arena);
        our_elems[i] = new_elem;
      }
    }
    // Main loop that does the actual merging
    for (int i = 0; i < length; i++) {
      // Already allocated: use existing element.
      typename TypeHandler::Type* other_elem =
          reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
      typename TypeHandler::Type* new_elem =
          reinterpret_cast<typename TypeHandler::Type*>(our_elems[i]);
      TypeHandler::Merge(*other_elem, new_elem);
    }
  }

  // Internal helper: extends array space if necessary to contain
  // |extend_amount| more elements, and returns a pointer to the element
  // immediately following the old list of elements.  This interface factors out
  // common behavior from Reserve() and MergeFrom() to reduce code size.
  // |extend_amount| must be > 0.
  void** InternalExtend(int extend_amount);

  // Internal helper for Add: adds "obj" as the next element in the
  // array, including potentially resizing the array with Reserve if
  // needed
  void* AddOutOfLineHelper(void* obj);

  // The reflection implementation needs to call protected methods directly,
  // reinterpreting pointers as being to Message instead of a specific Message
  // subclass.
  friend class ::PROTOBUF_NAMESPACE_ID::Reflection;
  friend class ::PROTOBUF_NAMESPACE_ID::internal::SwapFieldHelper;

  // ExtensionSet stores repeated message extensions as
  // RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
  // SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
  // reinterpreting MessageLite as Message.  ExtensionSet also needs to make use
  // of AddFromCleared(), which is not part of the public interface.
  friend class ExtensionSet;

  // The MapFieldBase implementation needs to call protected methods directly,
  // reinterpreting pointers as being to Message instead of a specific Message
  // subclass.
  friend class MapFieldBase;
  friend class MapFieldBaseStub;

  // The table-driven MergePartialFromCodedStream implementation needs to
  // operate on RepeatedPtrField<MessageLite>.
  friend class MergePartialFromCodedStreamHelper;
  friend class AccessorHelper;
  template <typename T>
  friend struct google::protobuf::WeakRepeatedPtrField;
  friend class internal::TcParser;  // TODO(jorg): Remove this friend.
};

template <typename GenericType>
class GenericTypeHandler {
 public:
  typedef GenericType Type;
  using Movable = IsMovable<GenericType>;

  static inline GenericType* New(Arena* arena) {
    return Arena::CreateMaybeMessage<Type>(arena);
  }
  static inline GenericType* New(Arena* arena, GenericType&& value) {
    return Arena::Create<GenericType>(arena, std::move(value));
  }
  static inline GenericType* NewFromPrototype(const GenericType* /*prototype*/,
                                              Arena* arena = nullptr) {
    return New(arena);
  }
  static inline void Delete(GenericType* value, Arena* arena) {
    if (arena == nullptr) {
      delete value;
    }
  }
  static inline Arena* GetOwningArena(GenericType* value) {
    return Arena::GetOwningArena<Type>(value);
  }

  static inline void Clear(GenericType* value) { value->Clear(); }
  static void Merge(const GenericType& from, GenericType* to);
  static inline size_t SpaceUsedLong(const GenericType& value) {
    return value.SpaceUsedLong();
  }
};

// NewFromPrototypeHelper() is not defined inline here, as we will need to do a
// virtual function dispatch anyways to go from Message* to call New/Merge. (The
// additional helper is needed as a workaround for MSVC.)
MessageLite* NewFromPrototypeHelper(const MessageLite* prototype, Arena* arena);

template <>
inline MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
    const MessageLite* prototype, Arena* arena) {
  return NewFromPrototypeHelper(prototype, arena);
}
template <>
inline Arena* GenericTypeHandler<MessageLite>::GetOwningArena(
    MessageLite* value) {
  return value->GetOwningArena();
}

template <typename GenericType>
PROTOBUF_NOINLINE inline void GenericTypeHandler<GenericType>::Merge(
    const GenericType& from, GenericType* to) {
  to->MergeFrom(from);
}
template <>
void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
                                            MessageLite* to);

template <>
inline void GenericTypeHandler<std::string>::Clear(std::string* value) {
  value->clear();
}
template <>
void GenericTypeHandler<std::string>::Merge(const std::string& from,
                                            std::string* to);

// Message specialization bodies defined in message.cc. This split is necessary
// to allow proto2-lite (which includes this header) to be independent of
// Message.
template <>
PROTOBUF_EXPORT Message* GenericTypeHandler<Message>::NewFromPrototype(
    const Message* prototype, Arena* arena);
template <>
PROTOBUF_EXPORT Arena* GenericTypeHandler<Message>::GetOwningArena(
    Message* value);

class StringTypeHandler {
 public:
  typedef std::string Type;
  using Movable = IsMovable<Type>;

  static inline std::string* New(Arena* arena) {
    return Arena::Create<std::string>(arena);
  }
  static inline std::string* New(Arena* arena, std::string&& value) {
    return Arena::Create<std::string>(arena, std::move(value));
  }
  static inline std::string* NewFromPrototype(const std::string*,
                                              Arena* arena) {
    return New(arena);
  }
  static inline Arena* GetOwningArena(std::string*) { return nullptr; }
  static inline void Delete(std::string* value, Arena* arena) {
    if (arena == nullptr) {
      delete value;
    }
  }
  static inline void Clear(std::string* value) { value->clear(); }
  static inline void Merge(const std::string& from, std::string* to) {
    *to = from;
  }
  static size_t SpaceUsedLong(const std::string& value) {
    return sizeof(value) + StringSpaceUsedExcludingSelfLong(value);
  }
};

}  // namespace internal

// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {

 public:
  constexpr RepeatedPtrField();
  explicit RepeatedPtrField(Arena* arena);

  RepeatedPtrField(const RepeatedPtrField& other);

  template <typename Iter,
            typename = typename std::enable_if<std::is_constructible<
                Element, decltype(*std::declval<Iter>())>::value>::type>
  RepeatedPtrField(Iter begin, Iter end);

  ~RepeatedPtrField();

  RepeatedPtrField& operator=(const RepeatedPtrField& other);

  RepeatedPtrField(RepeatedPtrField&& other) noexcept;
  RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept;

  bool empty() const;
  int size() const;

  const Element& Get(int index) const;
  Element* Mutable(int index);

  // Unlike std::vector, adding an element to a RepeatedPtrField doesn't always
  // make a new element; it might re-use an element left over from when the
  // field was Clear()'d or reize()'d smaller.  For this reason, Add() is the
  // fastest API for adding a new element.
  Element* Add();

  // `Add(std::move(value));` is equivalent to `*Add() = std::move(value);`
  // It will either move-construct to the end of this field, or swap value
  // with the new-or-recycled element at the end of this field.  Note that
  // this operation is very slow if this RepeatedPtrField is not on the
  // same Arena, if any, as `value`.
  void Add(Element&& value);

  // Copying to the end of this RepeatedPtrField is slowest of all; it can't
  // reliably copy-construct to the last element of this RepeatedPtrField, for
  // example (unlike std::vector).
  // We currently block this API.  The right way to add to the end is to call
  // Add() and modify the element it points to.
  // If you must add an existing value, call `*Add() = value;`
  void Add(const Element& value) = delete;

  // Append elements in the range [begin, end) after reserving
  // the appropriate number of elements.
  template <typename Iter>
  void Add(Iter begin, Iter end);

  const Element& operator[](int index) const { return Get(index); }
  Element& operator[](int index) { return *Mutable(index); }

  const Element& at(int index) const;
  Element& at(int index);

  // Removes the last element in the array.
  // Ownership of the element is retained by the array.
  void RemoveLast();

  // Deletes elements with indices in the range [start .. start+num-1].
  // Caution: moves all elements with indices [start+num .. ].
  // Calling this routine inside a loop can cause quadratic behavior.
  void DeleteSubrange(int start, int num);

  PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear();
  void MergeFrom(const RepeatedPtrField& other);
  PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedPtrField& other);

  // Replaces the contents with RepeatedPtrField(begin, end).
  template <typename Iter>
  PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);

  // Reserves space to expand the field to at least the given size.  This only
  // resizes the pointer array; it doesn't allocate any objects.  If the
  // array is grown, it will always be at least doubled in size.
  void Reserve(int new_size);

  int Capacity() const;

  // Gets the underlying array.  This pointer is possibly invalidated by
  // any add or remove operation.
  //
  // This API is deprecated. Instead of directly working with element array,
  // use APIs in repeated_field_util.h; e.g. sorting, etc.
  PROTOBUF_DEPRECATED_MSG("Use APIs in repeated_field_util.h")
  Element** mutable_data();
  const Element* const* data() const;

  // Swaps entire contents with "other". If they are on separate arenas, then
  // copies data.
  void Swap(RepeatedPtrField* other);

  // Swaps entire contents with "other". Caller should guarantee that either
  // both fields are on the same arena or both are on the heap. Swapping between
  // different arenas with this function is disallowed and is caught via
  // GOOGLE_DCHECK.
  void UnsafeArenaSwap(RepeatedPtrField* other);

  // Swaps two elements.
  void SwapElements(int index1, int index2);

  // STL-like iterator support
  typedef internal::RepeatedPtrIterator<Element> iterator;
  typedef internal::RepeatedPtrIterator<const Element> const_iterator;
  typedef Element value_type;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef int size_type;
  typedef ptrdiff_t difference_type;

  iterator begin();
  const_iterator begin() const;
  const_iterator cbegin() const;
  iterator end();
  const_iterator end() const;
  const_iterator cend() const;

  // Reverse iterator support
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  typedef std::reverse_iterator<iterator> reverse_iterator;
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  // Custom STL-like iterator that iterates over and returns the underlying
  // pointers to Element rather than Element itself.
  typedef internal::RepeatedPtrOverPtrsIterator<Element*, void*>
      pointer_iterator;
  typedef internal::RepeatedPtrOverPtrsIterator<const Element* const,
                                                const void* const>
      const_pointer_iterator;
  pointer_iterator pointer_begin();
  const_pointer_iterator pointer_begin() const;
  pointer_iterator pointer_end();
  const_pointer_iterator pointer_end() const;

  // Returns (an estimate of) the number of bytes used by the repeated field,
  // excluding sizeof(*this).
  size_t SpaceUsedExcludingSelfLong() const;

  int SpaceUsedExcludingSelf() const {
    return internal::ToIntSize(SpaceUsedExcludingSelfLong());
  }

  // Advanced memory management --------------------------------------
  // When hardcore memory management becomes necessary -- as it sometimes
  // does here at Google -- the following methods may be useful.

  // Adds an already-allocated object, passing ownership to the
  // RepeatedPtrField.
  //
  // Note that some special behavior occurs with respect to arenas:
  //
  //   (i) if this field holds submessages, the new submessage will be copied if
  //   the original is in an arena and this RepeatedPtrField is either in a
  //   different arena, or on the heap.
  //   (ii) if this field holds strings, the passed-in string *must* be
  //   heap-allocated, not arena-allocated. There is no way to dynamically check
  //   this at runtime, so User Beware.
  void AddAllocated(Element* value);

  // Removes and returns the last element, passing ownership to the caller.
  // Requires:  size() > 0
  //
  // If this RepeatedPtrField is on an arena, an object copy is required to pass
  // ownership back to the user (for compatible semantics). Use
  // UnsafeArenaReleaseLast() if this behavior is undesired.
  PROTOBUF_NODISCARD Element* ReleaseLast();

  // Adds an already-allocated object, skipping arena-ownership checks. The user
  // must guarantee that the given object is in the same arena as this
  // RepeatedPtrField.
  // It is also useful in legacy code that uses temporary ownership to avoid
  // copies. Example:
  //   RepeatedPtrField<T> temp_field;
  //   temp_field.UnsafeArenaAddAllocated(new T);
  //   ... // Do something with temp_field
  //   temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr);
  // If you put temp_field on the arena this fails, because the ownership
  // transfers to the arena at the "AddAllocated" call and is not released
  // anymore, causing a double delete. UnsafeArenaAddAllocated prevents this.
  void UnsafeArenaAddAllocated(Element* value);

  // Removes and returns the last element.  Unlike ReleaseLast, the returned
  // pointer is always to the original object.  This may be in an arena, in
  // which case it would have the arena's lifetime.
  // Requires: current_size_ > 0
  Element* UnsafeArenaReleaseLast();

  // Extracts elements with indices in the range "[start .. start+num-1]".
  // The caller assumes ownership of the extracted elements and is responsible
  // for deleting them when they are no longer needed.
  // If "elements" is non-nullptr, then pointers to the extracted elements
  // are stored in "elements[0 .. num-1]" for the convenience of the caller.
  // If "elements" is nullptr, then the caller must use some other mechanism
  // to perform any further operations (like deletion) on these elements.
  // Caution: implementation also moves elements with indices [start+num ..].
  // Calling this routine inside a loop can cause quadratic behavior.
  //
  // Memory copying behavior is identical to ReleaseLast(), described above: if
  // this RepeatedPtrField is on an arena, an object copy is performed for each
  // returned element, so that all returned element pointers are to
  // heap-allocated copies. If this copy is not desired, the user should call
  // UnsafeArenaExtractSubrange().
  void ExtractSubrange(int start, int num, Element** elements);

  // Identical to ExtractSubrange() described above, except that no object
  // copies are ever performed. Instead, the raw object pointers are returned.
  // Thus, if on an arena, the returned objects must not be freed, because they
  // will not be heap-allocated objects.
  void UnsafeArenaExtractSubrange(int start, int num, Element** elements);

  // When elements are removed by calls to RemoveLast() or Clear(), they
  // are not actually freed.  Instead, they are cleared and kept so that
  // they can be reused later.  This can save lots of CPU time when
  // repeatedly reusing a protocol message for similar purposes.
  //
  // Hardcore programs may choose to manipulate these cleared objects
  // to better optimize memory management using the following routines.

  // Gets the number of cleared objects that are currently being kept
  // around for reuse.
  int ClearedCount() const;
#ifndef PROTOBUF_FUTURE_BREAKING_CHANGES
  // Adds an element to the pool of cleared objects, passing ownership to
  // the RepeatedPtrField.  The element must be cleared prior to calling
  // this method.
  //
  // This method cannot be called when either the repeated field or |value| is
  // on an arena; both cases will trigger a GOOGLE_DCHECK-failure.
  void AddCleared(Element* value);
  // Removes and returns a single element from the cleared pool, passing
  // ownership to the caller.  The element is guaranteed to be cleared.
  // Requires:  ClearedCount() > 0
  //
  // This method cannot be called when the repeated field is on an arena; doing
  // so will trigger a GOOGLE_DCHECK-failure.
  PROTOBUF_NODISCARD Element* ReleaseCleared();
#endif  // !PROTOBUF_FUTURE_BREAKING_CHANGES

  // Removes the element referenced by position.
  //
  // Returns an iterator to the element immediately following the removed
  // element.
  //
  // Invalidates all iterators at or after the removed element, including end().
  iterator erase(const_iterator position);

  // Removes the elements in the range [first, last).
  //
  // Returns an iterator to the element immediately following the removed range.
  //
  // Invalidates all iterators at or after the removed range, including end().
  iterator erase(const_iterator first, const_iterator last);

  // Gets the arena on which this RepeatedPtrField stores its elements.
  inline Arena* GetArena() const;

  // For internal use only.
  //
  // This is public due to it being called by generated code.
  void InternalSwap(RepeatedPtrField* other) {
    internal::RepeatedPtrFieldBase::InternalSwap(other);
  }

 private:
  // Note:  RepeatedPtrField SHOULD NOT be subclassed by users.
  class TypeHandler;

  // Internal version of GetArena().
  inline Arena* GetOwningArena() const;

  // Implementations for ExtractSubrange(). The copying behavior must be
  // included only if the type supports the necessary operations (e.g.,
  // MergeFrom()), so we must resolve this at compile time. ExtractSubrange()
  // uses SFINAE to choose one of the below implementations.
  void ExtractSubrangeInternal(int start, int num, Element** elements,
                               std::true_type);
  void ExtractSubrangeInternal(int start, int num, Element** elements,
                               std::false_type);

  friend class Arena;

  template <typename T>
  friend struct WeakRepeatedPtrField;

  typedef void InternalArenaConstructable_;

};

// -------------------------------------------------------------------

template <typename Element>
class RepeatedPtrField<Element>::TypeHandler
    : public internal::GenericTypeHandler<Element> {};

template <>
class RepeatedPtrField<std::string>::TypeHandler
    : public internal::StringTypeHandler {};

template <typename Element>
constexpr RepeatedPtrField<Element>::RepeatedPtrField()
    : RepeatedPtrFieldBase() {}

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena)
    : RepeatedPtrFieldBase(arena) {}

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
    const RepeatedPtrField& other)
    : RepeatedPtrFieldBase() {
  MergeFrom(other);
}

template <typename Element>
template <typename Iter, typename>
inline RepeatedPtrField<Element>::RepeatedPtrField(Iter begin, Iter end) {
  Add(begin, end);
}

template <typename Element>
RepeatedPtrField<Element>::~RepeatedPtrField() {
#ifdef __cpp_if_constexpr
  if constexpr (std::is_base_of<MessageLite, Element>::value) {
#else
  if (std::is_base_of<MessageLite, Element>::value) {
#endif
    if (NeedsDestroy()) DestroyProtos();
  } else {
    Destroy<TypeHandler>();
  }
}

template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
    const RepeatedPtrField& other) {
  if (this != &other) CopyFrom(other);
  return *this;
}

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
    RepeatedPtrField&& other) noexcept
    : RepeatedPtrField() {
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
  CopyFrom(other);
#else   // PROTOBUF_FORCE_COPY_IN_MOVE
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // other is on an arena. This field can't be on an arena because arena
  // construction always uses the Arena* accepting constructor.
  if (other.GetOwningArena()) {
    CopyFrom(other);
  } else {
    InternalSwap(&other);
  }
#endif  // !PROTOBUF_FORCE_COPY_IN_MOVE
}

template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
    RepeatedPtrField&& other) noexcept {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // the two fields are on different arenas.
  if (this != &other) {
    if (GetOwningArena() != other.GetOwningArena()
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
        || GetOwningArena() == nullptr
#endif  // !PROTOBUF_FORCE_COPY_IN_MOVE
    ) {
      CopyFrom(other);
    } else {
      InternalSwap(&other);
    }
  }
  return *this;
}

template <typename Element>
inline bool RepeatedPtrField<Element>::empty() const {
  return RepeatedPtrFieldBase::empty();
}

template <typename Element>
inline int RepeatedPtrField<Element>::size() const {
  return RepeatedPtrFieldBase::size();
}

template <typename Element>
inline const Element& RepeatedPtrField<Element>::Get(int index) const {
  return RepeatedPtrFieldBase::Get<TypeHandler>(index);
}

template <typename Element>
inline const Element& RepeatedPtrField<Element>::at(int index) const {
  return RepeatedPtrFieldBase::at<TypeHandler>(index);
}

template <typename Element>
inline Element& RepeatedPtrField<Element>::at(int index) {
  return RepeatedPtrFieldBase::at<TypeHandler>(index);
}


template <typename Element>
inline Element* RepeatedPtrField<Element>::Mutable(int index) {
  return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::Add() {
  return RepeatedPtrFieldBase::Add<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::Add(Element&& value) {
  RepeatedPtrFieldBase::Add<TypeHandler>(std::move(value));
}

template <typename Element>
template <typename Iter>
inline void RepeatedPtrField<Element>::Add(Iter begin, Iter end) {
  if (std::is_base_of<
          std::forward_iterator_tag,
          typename std::iterator_traits<Iter>::iterator_category>::value) {
    int reserve = std::distance(begin, end);
    Reserve(size() + reserve);
  }
  for (; begin != end; ++begin) {
    *Add() = *begin;
  }
}

template <typename Element>
inline void RepeatedPtrField<Element>::RemoveLast() {
  RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, size());
  for (int i = 0; i < num; ++i) {
    RepeatedPtrFieldBase::Delete<TypeHandler>(start + i);
  }
  UnsafeArenaExtractSubrange(start, num, nullptr);
}

template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrange(int start, int num,
                                                       Element** elements) {
  typename internal::TypeImplementsMergeBehavior<
      typename TypeHandler::Type>::type t;
  ExtractSubrangeInternal(start, num, elements, t);
}

// ExtractSubrange() implementation for types that implement merge/copy
// behavior.
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
    int start, int num, Element** elements, std::true_type) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, size());

  if (num == 0) return;

  GOOGLE_DCHECK_NE(elements, nullptr)
      << "Releasing elements without transferring ownership is an unsafe "
         "operation.  Use UnsafeArenaExtractSubrange.";
  if (elements == nullptr) {
    CloseGap(start, num);
    return;
  }

  Arena* arena = GetOwningArena();
#ifdef PROTOBUF_FORCE_COPY_IN_RELEASE
  // Always copy.
  for (int i = 0; i < num; ++i) {
    elements[i] = copy<TypeHandler>(
        RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start));
  }
  if (arena == nullptr) {
    for (int i = 0; i < num; ++i) {
      delete RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
    }
  }
#else   // PROTOBUF_FORCE_COPY_IN_RELEASE
  // If we're on an arena, we perform a copy for each element so that the
  // returned elements are heap-allocated. Otherwise, just forward it.
  if (arena != nullptr) {
    for (int i = 0; i < num; ++i) {
      elements[i] = copy<TypeHandler>(
          RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start));
    }
  } else {
    for (int i = 0; i < num; ++i) {
      elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
    }
  }
#endif  // !PROTOBUF_FORCE_COPY_IN_RELEASE
  CloseGap(start, num);
}

// ExtractSubrange() implementation for types that do not implement merge/copy
// behavior.
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
    int start, int num, Element** elements, std::false_type) {
  // This case is identical to UnsafeArenaExtractSubrange(). However, since
  // ExtractSubrange() must return heap-allocated objects by contract, and we
  // cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that
  // we are not on an arena.
  GOOGLE_DCHECK(GetOwningArena() == nullptr)
      << "ExtractSubrange() when arena is non-nullptr is only supported when "
      << "the Element type supplies a MergeFrom() operation to make copies.";
  UnsafeArenaExtractSubrange(start, num, elements);
}

template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
    int start, int num, Element** elements) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, size());

  if (num > 0) {
    // Save the values of the removed elements if requested.
    if (elements != nullptr) {
      for (int i = 0; i < num; ++i) {
        elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
      }
    }
    CloseGap(start, num);
  }
}

template <typename Element>
inline void RepeatedPtrField<Element>::Clear() {
  RepeatedPtrFieldBase::Clear<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::MergeFrom(
    const RepeatedPtrField& other) {
  RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}

template <typename Element>
inline void RepeatedPtrField<Element>::CopyFrom(const RepeatedPtrField& other) {
  RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
}

template <typename Element>
template <typename Iter>
inline void RepeatedPtrField<Element>::Assign(Iter begin, Iter end) {
  Clear();
  Add(begin, end);
}

template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator position) {
  return erase(position, position + 1);
}

template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last) {
  size_type pos_offset = std::distance(cbegin(), first);
  size_type last_offset = std::distance(cbegin(), last);
  DeleteSubrange(pos_offset, last_offset - pos_offset);
  return begin() + pos_offset;
}

template <typename Element>
inline Element** RepeatedPtrField<Element>::mutable_data() {
  return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
}

template <typename Element>
inline const Element* const* RepeatedPtrField<Element>::data() const {
  return RepeatedPtrFieldBase::data<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
  if (this == other) return;
  RepeatedPtrFieldBase::Swap<TypeHandler>(other);
}

template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
    RepeatedPtrField* other) {
  if (this == other) return;
  GOOGLE_DCHECK_EQ(GetOwningArena(), other->GetOwningArena());
  RepeatedPtrFieldBase::InternalSwap(other);
}

template <typename Element>
inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
  RepeatedPtrFieldBase::SwapElements(index1, index2);
}

template <typename Element>
inline Arena* RepeatedPtrField<Element>::GetArena() const {
  return RepeatedPtrFieldBase::GetArena();
}

template <typename Element>
inline Arena* RepeatedPtrField<Element>::GetOwningArena() const {
  return RepeatedPtrFieldBase::GetOwningArena();
}

template <typename Element>
inline size_t RepeatedPtrField<Element>::SpaceUsedExcludingSelfLong() const {
  return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
  RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
}

template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
  RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseLast() {
  return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
  return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
}

template <typename Element>
inline int RepeatedPtrField<Element>::ClearedCount() const {
  return RepeatedPtrFieldBase::ClearedCount();
}

#ifndef PROTOBUF_FUTURE_BREAKING_CHANGES
template <typename Element>
inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
  return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
  return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
}
#endif  // !PROTOBUF_FUTURE_BREAKING_CHANGES

template <typename Element>
inline void RepeatedPtrField<Element>::Reserve(int new_size) {
  return RepeatedPtrFieldBase::Reserve(new_size);
}

template <typename Element>
inline int RepeatedPtrField<Element>::Capacity() const {
  return RepeatedPtrFieldBase::Capacity();
}

// -------------------------------------------------------------------

namespace internal {

// STL-like iterator implementation for RepeatedPtrField.  You should not
// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
//
// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
// very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
// but adds random-access operators and is modified to wrap a void** base
// iterator (since RepeatedPtrField stores its array as a void* array and
// casting void** to T** would violate C++ aliasing rules).
//
// This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
// (jyasskin@google.com).
template <typename Element>
class RepeatedPtrIterator {
 public:
  using iterator = RepeatedPtrIterator<Element>;
  using iterator_category = std::random_access_iterator_tag;
  using value_type = typename std::remove_const<Element>::type;
  using difference_type = std::ptrdiff_t;
  using pointer = Element*;
  using reference = Element&;

  RepeatedPtrIterator() : it_(nullptr) {}
  explicit RepeatedPtrIterator(void* const* it) : it_(it) {}

  // Allows "upcasting" from RepeatedPtrIterator<T**> to
  // RepeatedPtrIterator<const T*const*>.
  template <typename OtherElement,
            typename std::enable_if<std::is_convertible<
                OtherElement*, pointer>::value>::type* = nullptr>
  RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
      : it_(other.it_) {}

  // dereferenceable
  reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
  pointer operator->() const { return &(operator*()); }

  // {inc,dec}rementable
  iterator& operator++() {
    ++it_;
    return *this;
  }
  iterator operator++(int) { return iterator(it_++); }
  iterator& operator--() {
    --it_;
    return *this;
  }
  iterator operator--(int) { return iterator(it_--); }

  // equality_comparable
  friend bool operator==(const iterator& x, const iterator& y) {
    return x.it_ == y.it_;
  }
  friend bool operator!=(const iterator& x, const iterator& y) {
    return x.it_ != y.it_;
  }

  // less_than_comparable
  friend bool operator<(const iterator& x, const iterator& y) {
    return x.it_ < y.it_;
  }
  friend bool operator<=(const iterator& x, const iterator& y) {
    return x.it_ <= y.it_;
  }
  friend bool operator>(const iterator& x, const iterator& y) {
    return x.it_ > y.it_;
  }
  friend bool operator>=(const iterator& x, const iterator& y) {
    return x.it_ >= y.it_;
  }

  // addable, subtractable
  iterator& operator+=(difference_type d) {
    it_ += d;
    return *this;
  }
  friend iterator operator+(iterator it, const difference_type d) {
    it += d;
    return it;
  }
  friend iterator operator+(const difference_type d, iterator it) {
    it += d;
    return it;
  }
  iterator& operator-=(difference_type d) {
    it_ -= d;
    return *this;
  }
  friend iterator operator-(iterator it, difference_type d) {
    it -= d;
    return it;
  }

  // indexable
  reference operator[](difference_type d) const { return *(*this + d); }

  // random access iterator
  friend difference_type operator-(iterator it1, iterator it2) {
    return it1.it_ - it2.it_;
  }

 private:
  template <typename OtherElement>
  friend class RepeatedPtrIterator;

  // The internal iterator.
  void* const* it_;
};

// Provides an iterator that operates on pointers to the underlying objects
// rather than the objects themselves as RepeatedPtrIterator does.
// Consider using this when working with stl algorithms that change
// the array.
// The VoidPtr template parameter holds the type-agnostic pointer value
// referenced by the iterator.  It should either be "void *" for a mutable
// iterator, or "const void* const" for a constant iterator.
template <typename Element, typename VoidPtr>
class RepeatedPtrOverPtrsIterator {
 public:
  using iterator = RepeatedPtrOverPtrsIterator<Element, VoidPtr>;
  using iterator_category = std::random_access_iterator_tag;
  using value_type = typename std::remove_const<Element>::type;
  using difference_type = std::ptrdiff_t;
  using pointer = Element*;
  using reference = Element&;

  RepeatedPtrOverPtrsIterator() : it_(nullptr) {}
  explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}

  // Allows "upcasting" from RepeatedPtrOverPtrsIterator<T**> to
  // RepeatedPtrOverPtrsIterator<const T*const*>.
  template <
      typename OtherElement, typename OtherVoidPtr,
      typename std::enable_if<
          std::is_convertible<OtherElement*, pointer>::value &&
          std::is_convertible<OtherVoidPtr*, VoidPtr>::value>::type* = nullptr>
  RepeatedPtrOverPtrsIterator(
      const RepeatedPtrOverPtrsIterator<OtherElement, OtherVoidPtr>& other)
      : it_(other.it_) {}

  // dereferenceable
  reference operator*() const { return *reinterpret_cast<Element*>(it_); }
  pointer operator->() const { return &(operator*()); }

  // {inc,dec}rementable
  iterator& operator++() {
    ++it_;
    return *this;
  }
  iterator operator++(int) { return iterator(it_++); }
  iterator& operator--() {
    --it_;
    return *this;
  }
  iterator operator--(int) { return iterator(it_--); }

  // equality_comparable
  friend bool operator==(const iterator& x, const iterator& y) {
    return x.it_ == y.it_;
  }
  friend bool operator!=(const iterator& x, const iterator& y) {
    return x.it_ != y.it_;
  }

  // less_than_comparable
  friend bool operator<(const iterator& x, const iterator& y) {
    return x.it_ < y.it_;
  }
  friend bool operator<=(const iterator& x, const iterator& y) {
    return x.it_ <= y.it_;
  }
  friend bool operator>(const iterator& x, const iterator& y) {
    return x.it_ > y.it_;
  }
  friend bool operator>=(const iterator& x, const iterator& y) {
    return x.it_ >= y.it_;
  }

  // addable, subtractable
  iterator& operator+=(difference_type d) {
    it_ += d;
    return *this;
  }
  friend iterator operator+(iterator it, difference_type d) {
    it += d;
    return it;
  }
  friend iterator operator+(difference_type d, iterator it) {
    it += d;
    return it;
  }
  iterator& operator-=(difference_type d) {
    it_ -= d;
    return *this;
  }
  friend iterator operator-(iterator it, difference_type d) {
    it -= d;
    return it;
  }

  // indexable
  reference operator[](difference_type d) const { return *(*this + d); }

  // random access iterator
  friend difference_type operator-(iterator it1, iterator it2) {
    return it1.it_ - it2.it_;
  }

 private:
  template <typename OtherElement, typename OtherVoidPtr>
  friend class RepeatedPtrOverPtrsIterator;

  // The internal iterator.
  VoidPtr* it_;
};

}  // namespace internal

template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::begin() {
  return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::begin() const {
  return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cbegin() const {
  return begin();
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::end() {
  return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::end() const {
  return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cend() const {
  return end();
}

template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_begin() {
  return pointer_iterator(raw_mutable_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_begin() const {
  return const_pointer_iterator(const_cast<const void* const*>(raw_data()));
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_end() {
  return pointer_iterator(raw_mutable_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_end() const {
  return const_pointer_iterator(
      const_cast<const void* const*>(raw_data() + size()));
}

// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
//   std::copy(some_sequence.begin(), some_sequence.end(),
//             RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h

namespace internal {

// A back inserter for RepeatedPtrField objects.
template <typename T>
class RepeatedPtrFieldBackInsertIterator {
 public:
  using iterator_category = std::output_iterator_tag;
  using value_type = T;
  using pointer = void;
  using reference = void;
  using difference_type = std::ptrdiff_t;

  RepeatedPtrFieldBackInsertIterator(RepeatedPtrField<T>* const mutable_field)
      : field_(mutable_field) {}
  RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
    *field_->Add() = value;
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator=(
      const T* const ptr_to_value) {
    *field_->Add() = *ptr_to_value;
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator=(T&& value) {
    *field_->Add() = std::move(value);
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
  RepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
  RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
    return *this;
  }

 private:
  RepeatedPtrField<T>* field_;
};

// A back inserter for RepeatedPtrFields that inserts by transferring ownership
// of a pointer.
template <typename T>
class AllocatedRepeatedPtrFieldBackInsertIterator {
 public:
  using iterator_category = std::output_iterator_tag;
  using value_type = T;
  using pointer = void;
  using reference = void;
  using difference_type = std::ptrdiff_t;

  explicit AllocatedRepeatedPtrFieldBackInsertIterator(
      RepeatedPtrField<T>* const mutable_field)
      : field_(mutable_field) {}
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
      T* const ptr_to_value) {
    field_->AddAllocated(ptr_to_value);
    return *this;
  }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
    return *this;
  }

 private:
  RepeatedPtrField<T>* field_;
};

// Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
// uses the UnsafeArenaAddAllocated instead.
template <typename T>
class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator {
 public:
  using iterator_category = std::output_iterator_tag;
  using value_type = T;
  using pointer = void;
  using reference = void;
  using difference_type = std::ptrdiff_t;

  explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
      RepeatedPtrField<T>* const mutable_field)
      : field_(mutable_field) {}
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
      T const* const ptr_to_value) {
    field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
    return *this;
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
    return *this;
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
    return *this;
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
      int /* unused */) {
    return *this;
  }

 private:
  RepeatedPtrField<T>* field_;
};

}  // namespace internal

// Provides a back insert iterator for RepeatedPtrField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedPtrFieldBackInserter(
    RepeatedPtrField<T>* const mutable_field) {
  return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}

// Special back insert iterator for RepeatedPtrField instances, just in
// case someone wants to write generic template code that can access both
// RepeatedFields and RepeatedPtrFields using a common name.
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedFieldBackInserter(
    RepeatedPtrField<T>* const mutable_field) {
  return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}

// Provides a back insert iterator for RepeatedPtrField instances
// similar to std::back_inserter() which transfers the ownership while
// copying elements.
template <typename T>
internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
AllocatedRepeatedPtrFieldBackInserter(
    RepeatedPtrField<T>* const mutable_field) {
  return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
      mutable_field);
}

// Similar to AllocatedRepeatedPtrFieldBackInserter, using
// UnsafeArenaAddAllocated instead of AddAllocated.
// This is slightly faster if that matters. It is also useful in legacy code
// that uses temporary ownership to avoid copies. Example:
//   RepeatedPtrField<T> temp_field;
//   temp_field.UnsafeArenaAddAllocated(new T);
//   ... // Do something with temp_field
//   temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr);
// Putting temp_field on the arena fails because the ownership transfers to the
// arena at the "AddAllocated" call and is not released anymore causing a
// double delete. This function uses UnsafeArenaAddAllocated to prevent this.
template <typename T>
internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
    RepeatedPtrField<T>* const mutable_field) {
  return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
      mutable_field);
}

extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
    RepeatedPtrField<std::string>;

}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__