1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// This file defines the map container and its helpers to support protobuf maps.
//
// The Map and MapIterator types are provided by this header file.
// Please avoid using other types defined here, unless they are public
// types within Map or MapIterator, such as Map::value_type.

#ifndef GOOGLE_PROTOBUF_MAP_H__
#define GOOGLE_PROTOBUF_MAP_H__


#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>  // To support Visual Studio 2008
#include <map>
#include <string>
#include <type_traits>
#include <utility>

#if defined(__cpp_lib_string_view)
#include <string_view>
#endif  // defined(__cpp_lib_string_view)

#if !defined(GOOGLE_PROTOBUF_NO_RDTSC) && defined(__APPLE__)
#include <mach/mach_time.h>
#endif

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/generated_enum_util.h>
#include <google/protobuf/map_type_handler.h>
#include <google/protobuf/port.h>
#include <google/protobuf/stubs/hash.h>

#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif

// Must be included last.
#include <google/protobuf/port_def.inc>

namespace google {
namespace protobuf {

template <typename Key, typename T>
class Map;

class MapIterator;

template <typename Enum>
struct is_proto_enum;

namespace internal {
template <typename Derived, typename Key, typename T,
          WireFormatLite::FieldType key_wire_type,
          WireFormatLite::FieldType value_wire_type>
class MapFieldLite;

template <typename Derived, typename Key, typename T,
          WireFormatLite::FieldType key_wire_type,
          WireFormatLite::FieldType value_wire_type>
class MapField;

template <typename Key, typename T>
class TypeDefinedMapFieldBase;

class DynamicMapField;

class GeneratedMessageReflection;

// re-implement std::allocator to use arena allocator for memory allocation.
// Used for Map implementation. Users should not use this class
// directly.
template <typename U>
class MapAllocator {
 public:
  using value_type = U;
  using pointer = value_type*;
  using const_pointer = const value_type*;
  using reference = value_type&;
  using const_reference = const value_type&;
  using size_type = size_t;
  using difference_type = ptrdiff_t;

  constexpr MapAllocator() : arena_(nullptr) {}
  explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {}
  template <typename X>
  MapAllocator(const MapAllocator<X>& allocator)  // NOLINT(runtime/explicit)
      : arena_(allocator.arena()) {}

  // MapAllocator does not support alignments beyond 8. Technically we should
  // support up to std::max_align_t, but this fails with ubsan and tcmalloc
  // debug allocation logic which assume 8 as default alignment.
  static_assert(alignof(value_type) <= 8, "");

  pointer allocate(size_type n, const void* /* hint */ = nullptr) {
    // If arena is not given, malloc needs to be called which doesn't
    // construct element object.
    if (arena_ == nullptr) {
      return static_cast<pointer>(::operator new(n * sizeof(value_type)));
    } else {
      return reinterpret_cast<pointer>(
          Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type)));
    }
  }

  void deallocate(pointer p, size_type n) {
    if (arena_ == nullptr) {
      internal::SizedDelete(p, n * sizeof(value_type));
    }
  }

#if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \
    !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
  template <class NodeType, class... Args>
  void construct(NodeType* p, Args&&... args) {
    // Clang 3.6 doesn't compile static casting to void* directly. (Issue
    // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
    // not cast away constness". So first the maybe const pointer is casted to
    // const void* and after the const void* is const casted.
    new (const_cast<void*>(static_cast<const void*>(p)))
        NodeType(std::forward<Args>(args)...);
  }

  template <class NodeType>
  void destroy(NodeType* p) {
    p->~NodeType();
  }
#else
  void construct(pointer p, const_reference t) { new (p) value_type(t); }

  void destroy(pointer p) { p->~value_type(); }
#endif

  template <typename X>
  struct rebind {
    using other = MapAllocator<X>;
  };

  template <typename X>
  bool operator==(const MapAllocator<X>& other) const {
    return arena_ == other.arena_;
  }

  template <typename X>
  bool operator!=(const MapAllocator<X>& other) const {
    return arena_ != other.arena_;
  }

  // To support Visual Studio 2008
  size_type max_size() const {
    // parentheses around (std::...:max) prevents macro warning of max()
    return (std::numeric_limits<size_type>::max)();
  }

  // To support gcc-4.4, which does not properly
  // support templated friend classes
  Arena* arena() const { return arena_; }

 private:
  using DestructorSkippable_ = void;
  Arena* arena_;
};

template <typename T>
using KeyForTree =
    typename std::conditional<std::is_scalar<T>::value, T,
                              std::reference_wrapper<const T>>::type;

// Default case: Not transparent.
// We use std::hash<key_type>/std::less<key_type> and all the lookup functions
// only accept `key_type`.
template <typename key_type>
struct TransparentSupport {
  using hash = std::hash<key_type>;
  using less = std::less<key_type>;

  static bool Equals(const key_type& a, const key_type& b) { return a == b; }

  template <typename K>
  using key_arg = key_type;
};

#if defined(__cpp_lib_string_view)
// If std::string_view is available, we add transparent support for std::string
// keys. We use std::hash<std::string_view> as it supports the input types we
// care about. The lookup functions accept arbitrary `K`. This will include any
// key type that is convertible to std::string_view.
template <>
struct TransparentSupport<std::string> {
  static std::string_view ImplicitConvert(std::string_view str) { return str; }
  // If the element is not convertible to std::string_view, try to convert to
  // std::string first.
  // The template makes this overload lose resolution when both have the same
  // rank otherwise.
  template <typename = void>
  static std::string_view ImplicitConvert(const std::string& str) {
    return str;
  }

  struct hash : private std::hash<std::string_view> {
    using is_transparent = void;

    template <typename T>
    size_t operator()(const T& str) const {
      return base()(ImplicitConvert(str));
    }

   private:
    const std::hash<std::string_view>& base() const { return *this; }
  };
  struct less {
    using is_transparent = void;

    template <typename T, typename U>
    bool operator()(const T& t, const U& u) const {
      return ImplicitConvert(t) < ImplicitConvert(u);
    }
  };

  template <typename T, typename U>
  static bool Equals(const T& t, const U& u) {
    return ImplicitConvert(t) == ImplicitConvert(u);
  }

  template <typename K>
  using key_arg = K;
};
#endif  // defined(__cpp_lib_string_view)

template <typename Key>
using TreeForMap =
    std::map<KeyForTree<Key>, void*, typename TransparentSupport<Key>::less,
             MapAllocator<std::pair<const KeyForTree<Key>, void*>>>;

inline bool TableEntryIsEmpty(void* const* table, size_t b) {
  return table[b] == nullptr;
}
inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) {
  return table[b] != nullptr && table[b] != table[b ^ 1];
}
inline bool TableEntryIsTree(void* const* table, size_t b) {
  return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b);
}
inline bool TableEntryIsList(void* const* table, size_t b) {
  return !TableEntryIsTree(table, b);
}

// This captures all numeric types.
inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; }
inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) {
  return StringSpaceUsedExcludingSelfLong(str);
}
template <typename T,
          typename = decltype(std::declval<const T&>().SpaceUsedLong())>
size_t MapValueSpaceUsedExcludingSelfLong(const T& message) {
  return message.SpaceUsedLong() - sizeof(T);
}

constexpr size_t kGlobalEmptyTableSize = 1;
PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize];

// Space used for the table, trees, and nodes.
// Does not include the indirect space used. Eg the data of a std::string.
template <typename Key>
PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets,
                                          size_t num_elements,
                                          size_t sizeof_node) {
  size_t size = 0;
  // The size of the table.
  size += sizeof(void*) * num_buckets;
  // All the nodes.
  size += sizeof_node * num_elements;
  // For each tree, count the overhead of the those nodes.
  // Two buckets at a time because we only care about trees.
  for (size_t b = 0; b < num_buckets; b += 2) {
    if (internal::TableEntryIsTree(table, b)) {
      using Tree = TreeForMap<Key>;
      Tree* tree = static_cast<Tree*>(table[b]);
      // Estimated cost of the red-black tree nodes, 3 pointers plus a
      // bool (plus alignment, so 4 pointers).
      size += tree->size() *
              (sizeof(typename Tree::value_type) + sizeof(void*) * 4);
    }
  }
  return size;
}

template <typename Map,
          typename = typename std::enable_if<
              !std::is_scalar<typename Map::key_type>::value ||
              !std::is_scalar<typename Map::mapped_type>::value>::type>
size_t SpaceUsedInValues(const Map* map) {
  size_t size = 0;
  for (const auto& v : *map) {
    size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) +
            internal::MapValueSpaceUsedExcludingSelfLong(v.second);
  }
  return size;
}

inline size_t SpaceUsedInValues(const void*) { return 0; }

}  // namespace internal

// This is the class for Map's internal value_type. Instead of using
// std::pair as value_type, we use this class which provides us more control of
// its process of construction and destruction.
template <typename Key, typename T>
struct PROTOBUF_ATTRIBUTE_STANDALONE_DEBUG MapPair {
  using first_type = const Key;
  using second_type = T;

  MapPair(const Key& other_first, const T& other_second)
      : first(other_first), second(other_second) {}
  explicit MapPair(const Key& other_first) : first(other_first), second() {}
  explicit MapPair(Key&& other_first)
      : first(std::move(other_first)), second() {}
  MapPair(const MapPair& other) : first(other.first), second(other.second) {}

  ~MapPair() {}

  // Implicitly convertible to std::pair of compatible types.
  template <typename T1, typename T2>
  operator std::pair<T1, T2>() const {  // NOLINT(runtime/explicit)
    return std::pair<T1, T2>(first, second);
  }

  const Key first;
  T second;

 private:
  friend class Arena;
  friend class Map<Key, T>;
};

// Map is an associative container type used to store protobuf map
// fields.  Each Map instance may or may not use a different hash function, a
// different iteration order, and so on.  E.g., please don't examine
// implementation details to decide if the following would work:
//  Map<int, int> m0, m1;
//  m0[0] = m1[0] = m0[1] = m1[1] = 0;
//  assert(m0.begin()->first == m1.begin()->first);  // Bug!
//
// Map's interface is similar to std::unordered_map, except that Map is not
// designed to play well with exceptions.
template <typename Key, typename T>
class Map {
 public:
  using key_type = Key;
  using mapped_type = T;
  using value_type = MapPair<Key, T>;

  using pointer = value_type*;
  using const_pointer = const value_type*;
  using reference = value_type&;
  using const_reference = const value_type&;

  using size_type = size_t;
  using hasher = typename internal::TransparentSupport<Key>::hash;

  constexpr Map() : elements_(nullptr) {}
  explicit Map(Arena* arena) : elements_(arena) {}

  Map(const Map& other) : Map() { insert(other.begin(), other.end()); }

  Map(Map&& other) noexcept : Map() {
    if (other.arena() != nullptr) {
      *this = other;
    } else {
      swap(other);
    }
  }

  Map& operator=(Map&& other) noexcept {
    if (this != &other) {
      if (arena() != other.arena()) {
        *this = other;
      } else {
        swap(other);
      }
    }
    return *this;
  }

  template <class InputIt>
  Map(const InputIt& first, const InputIt& last) : Map() {
    insert(first, last);
  }

  ~Map() {}

 private:
  using Allocator = internal::MapAllocator<void*>;

  // InnerMap is a generic hash-based map.  It doesn't contain any
  // protocol-buffer-specific logic.  It is a chaining hash map with the
  // additional feature that some buckets can be converted to use an ordered
  // container.  This ensures O(lg n) bounds on find, insert, and erase, while
  // avoiding the overheads of ordered containers most of the time.
  //
  // The implementation doesn't need the full generality of unordered_map,
  // and it doesn't have it.  More bells and whistles can be added as needed.
  // Some implementation details:
  // 1. The hash function has type hasher and the equality function
  //    equal_to<Key>.  We inherit from hasher to save space
  //    (empty-base-class optimization).
  // 2. The number of buckets is a power of two.
  // 3. Buckets are converted to trees in pairs: if we convert bucket b then
  //    buckets b and b^1 will share a tree.  Invariant: buckets b and b^1 have
  //    the same non-null value iff they are sharing a tree.  (An alternative
  //    implementation strategy would be to have a tag bit per bucket.)
  // 4. As is typical for hash_map and such, the Keys and Values are always
  //    stored in linked list nodes.  Pointers to elements are never invalidated
  //    until the element is deleted.
  // 5. The trees' payload type is pointer to linked-list node.  Tree-converting
  //    a bucket doesn't copy Key-Value pairs.
  // 6. Once we've tree-converted a bucket, it is never converted back. However,
  //    the items a tree contains may wind up assigned to trees or lists upon a
  //    rehash.
  // 7. The code requires no C++ features from C++14 or later.
  // 8. Mutations to a map do not invalidate the map's iterators, pointers to
  //    elements, or references to elements.
  // 9. Except for erase(iterator), any non-const method can reorder iterators.
  // 10. InnerMap uses KeyForTree<Key> when using the Tree representation, which
  //    is either `Key`, if Key is a scalar, or `reference_wrapper<const Key>`
  //    otherwise. This avoids unnecessary copies of string keys, for example.
  class InnerMap : private hasher {
   public:
    explicit constexpr InnerMap(Arena* arena)
        : hasher(),
          num_elements_(0),
          num_buckets_(internal::kGlobalEmptyTableSize),
          seed_(0),
          index_of_first_non_null_(internal::kGlobalEmptyTableSize),
          table_(const_cast<void**>(internal::kGlobalEmptyTable)),
          alloc_(arena) {}

    ~InnerMap() {
      if (alloc_.arena() == nullptr &&
          num_buckets_ != internal::kGlobalEmptyTableSize) {
        clear();
        Dealloc<void*>(table_, num_buckets_);
      }
    }

   private:
    enum { kMinTableSize = 8 };

    // Linked-list nodes, as one would expect for a chaining hash table.
    struct Node {
      value_type kv;
      Node* next;
    };

    // Trees. The payload type is a copy of Key, so that we can query the tree
    // with Keys that are not in any particular data structure.
    // The value is a void* pointing to Node. We use void* instead of Node* to
    // avoid code bloat. That way there is only one instantiation of the tree
    // class per key type.
    using Tree = internal::TreeForMap<Key>;
    using TreeIterator = typename Tree::iterator;

    static Node* NodeFromTreeIterator(TreeIterator it) {
      return static_cast<Node*>(it->second);
    }

    // iterator and const_iterator are instantiations of iterator_base.
    template <typename KeyValueType>
    class iterator_base {
     public:
      using reference = KeyValueType&;
      using pointer = KeyValueType*;

      // Invariants:
      // node_ is always correct. This is handy because the most common
      // operations are operator* and operator-> and they only use node_.
      // When node_ is set to a non-null value, all the other non-const fields
      // are updated to be correct also, but those fields can become stale
      // if the underlying map is modified.  When those fields are needed they
      // are rechecked, and updated if necessary.
      iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {}

      explicit iterator_base(const InnerMap* m) : m_(m) {
        SearchFrom(m->index_of_first_non_null_);
      }

      // Any iterator_base can convert to any other.  This is overkill, and we
      // rely on the enclosing class to use it wisely.  The standard "iterator
      // can convert to const_iterator" is OK but the reverse direction is not.
      template <typename U>
      explicit iterator_base(const iterator_base<U>& it)
          : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {}

      iterator_base(Node* n, const InnerMap* m, size_type index)
          : node_(n), m_(m), bucket_index_(index) {}

      iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
          : node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) {
        // Invariant: iterators that use buckets with trees have an even
        // bucket_index_.
        GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u);
      }

      // Advance through buckets, looking for the first that isn't empty.
      // If nothing non-empty is found then leave node_ == nullptr.
      void SearchFrom(size_type start_bucket) {
        GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
               m_->table_[m_->index_of_first_non_null_] != nullptr);
        node_ = nullptr;
        for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
             bucket_index_++) {
          if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
            node_ = static_cast<Node*>(m_->table_[bucket_index_]);
            break;
          } else if (m_->TableEntryIsTree(bucket_index_)) {
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
            GOOGLE_DCHECK(!tree->empty());
            node_ = NodeFromTreeIterator(tree->begin());
            break;
          }
        }
      }

      reference operator*() const { return node_->kv; }
      pointer operator->() const { return &(operator*()); }

      friend bool operator==(const iterator_base& a, const iterator_base& b) {
        return a.node_ == b.node_;
      }
      friend bool operator!=(const iterator_base& a, const iterator_base& b) {
        return a.node_ != b.node_;
      }

      iterator_base& operator++() {
        if (node_->next == nullptr) {
          TreeIterator tree_it;
          const bool is_list = revalidate_if_necessary(&tree_it);
          if (is_list) {
            SearchFrom(bucket_index_ + 1);
          } else {
            GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u);
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
            if (++tree_it == tree->end()) {
              SearchFrom(bucket_index_ + 2);
            } else {
              node_ = NodeFromTreeIterator(tree_it);
            }
          }
        } else {
          node_ = node_->next;
        }
        return *this;
      }

      iterator_base operator++(int /* unused */) {
        iterator_base tmp = *this;
        ++*this;
        return tmp;
      }

      // Assumes node_ and m_ are correct and non-null, but other fields may be
      // stale.  Fix them as needed.  Then return true iff node_ points to a
      // Node in a list.  If false is returned then *it is modified to be
      // a valid iterator for node_.
      bool revalidate_if_necessary(TreeIterator* it) {
        GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr);
        // Force bucket_index_ to be in range.
        bucket_index_ &= (m_->num_buckets_ - 1);
        // Common case: the bucket we think is relevant points to node_.
        if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true;
        // Less common: the bucket is a linked list with node_ somewhere in it,
        // but not at the head.
        if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
          Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
          while ((l = l->next) != nullptr) {
            if (l == node_) {
              return true;
            }
          }
        }
        // Well, bucket_index_ still might be correct, but probably
        // not.  Revalidate just to be sure.  This case is rare enough that we
        // don't worry about potential optimizations, such as having a custom
        // find-like method that compares Node* instead of the key.
        iterator_base i(m_->find(node_->kv.first, it));
        bucket_index_ = i.bucket_index_;
        return m_->TableEntryIsList(bucket_index_);
      }

      Node* node_;
      const InnerMap* m_;
      size_type bucket_index_;
    };

   public:
    using iterator = iterator_base<value_type>;
    using const_iterator = iterator_base<const value_type>;

    Arena* arena() const { return alloc_.arena(); }

    void Swap(InnerMap* other) {
      std::swap(num_elements_, other->num_elements_);
      std::swap(num_buckets_, other->num_buckets_);
      std::swap(seed_, other->seed_);
      std::swap(index_of_first_non_null_, other->index_of_first_non_null_);
      std::swap(table_, other->table_);
      std::swap(alloc_, other->alloc_);
    }

    iterator begin() { return iterator(this); }
    iterator end() { return iterator(); }
    const_iterator begin() const { return const_iterator(this); }
    const_iterator end() const { return const_iterator(); }

    void clear() {
      for (size_type b = 0; b < num_buckets_; b++) {
        if (TableEntryIsNonEmptyList(b)) {
          Node* node = static_cast<Node*>(table_[b]);
          table_[b] = nullptr;
          do {
            Node* next = node->next;
            DestroyNode(node);
            node = next;
          } while (node != nullptr);
        } else if (TableEntryIsTree(b)) {
          Tree* tree = static_cast<Tree*>(table_[b]);
          GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
          table_[b] = table_[b + 1] = nullptr;
          typename Tree::iterator tree_it = tree->begin();
          do {
            Node* node = NodeFromTreeIterator(tree_it);
            typename Tree::iterator next = tree_it;
            ++next;
            tree->erase(tree_it);
            DestroyNode(node);
            tree_it = next;
          } while (tree_it != tree->end());
          DestroyTree(tree);
          b++;
        }
      }
      num_elements_ = 0;
      index_of_first_non_null_ = num_buckets_;
    }

    const hasher& hash_function() const { return *this; }

    static size_type max_size() {
      return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
    }
    size_type size() const { return num_elements_; }
    bool empty() const { return size() == 0; }

    template <typename K>
    iterator find(const K& k) {
      return iterator(FindHelper(k).first);
    }

    template <typename K>
    const_iterator find(const K& k) const {
      return FindHelper(k).first;
    }

    // Inserts a new element into the container if there is no element with the
    // key in the container.
    // The new element is:
    //  (1) Constructed in-place with the given args, if mapped_type is not
    //      arena constructible.
    //  (2) Constructed in-place with the arena and then assigned with a
    //      mapped_type temporary constructed with the given args, otherwise.
    template <typename K, typename... Args>
    std::pair<iterator, bool> try_emplace(K&& k, Args&&... args) {
      return ArenaAwareTryEmplace(Arena::is_arena_constructable<mapped_type>(),
                                  std::forward<K>(k),
                                  std::forward<Args>(args)...);
    }

    // Inserts the key into the map, if not present. In that case, the value
    // will be value initialized.
    template <typename K>
    std::pair<iterator, bool> insert(K&& k) {
      return try_emplace(std::forward<K>(k));
    }

    template <typename K>
    value_type& operator[](K&& k) {
      return *try_emplace(std::forward<K>(k)).first;
    }

    void erase(iterator it) {
      GOOGLE_DCHECK_EQ(it.m_, this);
      typename Tree::iterator tree_it;
      const bool is_list = it.revalidate_if_necessary(&tree_it);
      size_type b = it.bucket_index_;
      Node* const item = it.node_;
      if (is_list) {
        GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
        Node* head = static_cast<Node*>(table_[b]);
        head = EraseFromLinkedList(item, head);
        table_[b] = static_cast<void*>(head);
      } else {
        GOOGLE_DCHECK(TableEntryIsTree(b));
        Tree* tree = static_cast<Tree*>(table_[b]);
        tree->erase(tree_it);
        if (tree->empty()) {
          // Force b to be the minimum of b and b ^ 1.  This is important
          // only because we want index_of_first_non_null_ to be correct.
          b &= ~static_cast<size_type>(1);
          DestroyTree(tree);
          table_[b] = table_[b + 1] = nullptr;
        }
      }
      DestroyNode(item);
      --num_elements_;
      if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
        while (index_of_first_non_null_ < num_buckets_ &&
               table_[index_of_first_non_null_] == nullptr) {
          ++index_of_first_non_null_;
        }
      }
    }

    size_t SpaceUsedInternal() const {
      return internal::SpaceUsedInTable<Key>(table_, num_buckets_,
                                             num_elements_, sizeof(Node));
    }

   private:
    template <typename K, typename... Args>
    std::pair<iterator, bool> TryEmplaceInternal(K&& k, Args&&... args) {
      std::pair<const_iterator, size_type> p = FindHelper(k);
      // Case 1: key was already present.
      if (p.first.node_ != nullptr)
        return std::make_pair(iterator(p.first), false);
      // Case 2: insert.
      if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
        p = FindHelper(k);
      }
      const size_type b = p.second;  // bucket number
      // If K is not key_type, make the conversion to key_type explicit.
      using TypeToInit = typename std::conditional<
          std::is_same<typename std::decay<K>::type, key_type>::value, K&&,
          key_type>::type;
      Node* node = Alloc<Node>(1);
      // Even when arena is nullptr, CreateInArenaStorage is still used to
      // ensure the arena of submessage will be consistent. Otherwise,
      // submessage may have its own arena when message-owned arena is enabled.
      // Note: This only works if `Key` is not arena constructible.
      Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first),
                                  alloc_.arena(),
                                  static_cast<TypeToInit>(std::forward<K>(k)));
      // Note: if `T` is arena constructible, `Args` needs to be empty.
      Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena(),
                                  std::forward<Args>(args)...);

      iterator result = InsertUnique(b, node);
      ++num_elements_;
      return std::make_pair(result, true);
    }

    // A helper function to perform an assignment of `mapped_type`.
    // If the first argument is true, then it is a regular assignment.
    // Otherwise, we first create a temporary and then perform an assignment.
    template <typename V>
    static void AssignMapped(std::true_type, mapped_type& mapped, V&& v) {
      mapped = std::forward<V>(v);
    }
    template <typename... Args>
    static void AssignMapped(std::false_type, mapped_type& mapped,
                             Args&&... args) {
      mapped = mapped_type(std::forward<Args>(args)...);
    }

    // Case 1: `mapped_type` is arena constructible. A temporary object is
    // created and then (if `Args` are not empty) assigned to a mapped value
    // that was created with the arena.
    template <typename K>
    std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k) {
      // case 1.1: "default" constructed (e.g. from arena only).
      return TryEmplaceInternal(std::forward<K>(k));
    }
    template <typename K, typename... Args>
    std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k,
                                                   Args&&... args) {
      // case 1.2: "default" constructed + copy/move assignment
      auto p = TryEmplaceInternal(std::forward<K>(k));
      if (p.second) {
        AssignMapped(std::is_same<void(typename std::decay<Args>::type...),
                                  void(mapped_type)>(),
                     p.first->second, std::forward<Args>(args)...);
      }
      return p;
    }
    // Case 2: `mapped_type` is not arena constructible. Using in-place
    // construction.
    template <typename... Args>
    std::pair<iterator, bool> ArenaAwareTryEmplace(std::false_type,
                                                   Args&&... args) {
      return TryEmplaceInternal(std::forward<Args>(args)...);
    }

    const_iterator find(const Key& k, TreeIterator* it) const {
      return FindHelper(k, it).first;
    }
    template <typename K>
    std::pair<const_iterator, size_type> FindHelper(const K& k) const {
      return FindHelper(k, nullptr);
    }
    template <typename K>
    std::pair<const_iterator, size_type> FindHelper(const K& k,
                                                    TreeIterator* it) const {
      size_type b = BucketNumber(k);
      if (TableEntryIsNonEmptyList(b)) {
        Node* node = static_cast<Node*>(table_[b]);
        do {
          if (internal::TransparentSupport<Key>::Equals(node->kv.first, k)) {
            return std::make_pair(const_iterator(node, this, b), b);
          } else {
            node = node->next;
          }
        } while (node != nullptr);
      } else if (TableEntryIsTree(b)) {
        GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
        b &= ~static_cast<size_t>(1);
        Tree* tree = static_cast<Tree*>(table_[b]);
        auto tree_it = tree->find(k);
        if (tree_it != tree->end()) {
          if (it != nullptr) *it = tree_it;
          return std::make_pair(const_iterator(tree_it, this, b), b);
        }
      }
      return std::make_pair(end(), b);
    }

    // Insert the given Node in bucket b.  If that would make bucket b too big,
    // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
    // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
    // bucket.  num_elements_ is not modified.
    iterator InsertUnique(size_type b, Node* node) {
      GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
             table_[index_of_first_non_null_] != nullptr);
      // In practice, the code that led to this point may have already
      // determined whether we are inserting into an empty list, a short list,
      // or whatever.  But it's probably cheap enough to recompute that here;
      // it's likely that we're inserting into an empty or short list.
      iterator result;
      GOOGLE_DCHECK(find(node->kv.first) == end());
      if (TableEntryIsEmpty(b)) {
        result = InsertUniqueInList(b, node);
      } else if (TableEntryIsNonEmptyList(b)) {
        if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) {
          TreeConvert(b);
          result = InsertUniqueInTree(b, node);
          GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
        } else {
          // Insert into a pre-existing list.  This case cannot modify
          // index_of_first_non_null_, so we skip the code to update it.
          return InsertUniqueInList(b, node);
        }
      } else {
        // Insert into a pre-existing tree.  This case cannot modify
        // index_of_first_non_null_, so we skip the code to update it.
        return InsertUniqueInTree(b, node);
      }
      // parentheses around (std::min) prevents macro expansion of min(...)
      index_of_first_non_null_ =
          (std::min)(index_of_first_non_null_, result.bucket_index_);
      return result;
    }

    // Returns whether we should insert after the head of the list. For
    // non-optimized builds, we randomly decide whether to insert right at the
    // head of the list or just after the head. This helps add a little bit of
    // non-determinism to the map ordering.
    bool ShouldInsertAfterHead(void* node) {
#ifdef NDEBUG
      (void)node;
      return false;
#else
      // Doing modulo with a prime mixes the bits more.
      return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6;
#endif
    }

    // Helper for InsertUnique.  Handles the case where bucket b is a
    // not-too-long linked list.
    iterator InsertUniqueInList(size_type b, Node* node) {
      if (table_[b] != nullptr && ShouldInsertAfterHead(node)) {
        Node* first = static_cast<Node*>(table_[b]);
        node->next = first->next;
        first->next = node;
        return iterator(node, this, b);
      }

      node->next = static_cast<Node*>(table_[b]);
      table_[b] = static_cast<void*>(node);
      return iterator(node, this, b);
    }

    // Helper for InsertUnique.  Handles the case where bucket b points to a
    // Tree.
    iterator InsertUniqueInTree(size_type b, Node* node) {
      GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
      // Maintain the invariant that node->next is null for all Nodes in Trees.
      node->next = nullptr;
      return iterator(
          static_cast<Tree*>(table_[b])->insert({node->kv.first, node}).first,
          this, b & ~static_cast<size_t>(1));
    }

    // Returns whether it did resize.  Currently this is only used when
    // num_elements_ increases, though it could be used in other situations.
    // It checks for load too low as well as load too high: because any number
    // of erases can occur between inserts, the load could be as low as 0 here.
    // Resizing to a lower size is not always helpful, but failing to do so can
    // destroy the expected big-O bounds for some operations. By having the
    // policy that sometimes we resize down as well as up, clients can easily
    // keep O(size()) = O(number of buckets) if they want that.
    bool ResizeIfLoadIsOutOfRange(size_type new_size) {
      const size_type kMaxMapLoadTimes16 = 12;  // controls RAM vs CPU tradeoff
      const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
      const size_type lo_cutoff = hi_cutoff / 4;
      // We don't care how many elements are in trees.  If a lot are,
      // we may resize even though there are many empty buckets.  In
      // practice, this seems fine.
      if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) {
        if (num_buckets_ <= max_size() / 2) {
          Resize(num_buckets_ * 2);
          return true;
        }
      } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
                                        num_buckets_ > kMinTableSize)) {
        size_type lg2_of_size_reduction_factor = 1;
        // It's possible we want to shrink a lot here... size() could even be 0.
        // So, estimate how much to shrink by making sure we don't shrink so
        // much that we would need to grow the table after a few inserts.
        const size_type hypothetical_size = new_size * 5 / 4 + 1;
        while ((hypothetical_size << lg2_of_size_reduction_factor) <
               hi_cutoff) {
          ++lg2_of_size_reduction_factor;
        }
        size_type new_num_buckets = std::max<size_type>(
            kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
        if (new_num_buckets != num_buckets_) {
          Resize(new_num_buckets);
          return true;
        }
      }
      return false;
    }

    // Resize to the given number of buckets.
    void Resize(size_t new_num_buckets) {
      if (num_buckets_ == internal::kGlobalEmptyTableSize) {
        // This is the global empty array.
        // Just overwrite with a new one. No need to transfer or free anything.
        num_buckets_ = index_of_first_non_null_ = kMinTableSize;
        table_ = CreateEmptyTable(num_buckets_);
        seed_ = Seed();
        return;
      }

      GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
      void** const old_table = table_;
      const size_type old_table_size = num_buckets_;
      num_buckets_ = new_num_buckets;
      table_ = CreateEmptyTable(num_buckets_);
      const size_type start = index_of_first_non_null_;
      index_of_first_non_null_ = num_buckets_;
      for (size_type i = start; i < old_table_size; i++) {
        if (internal::TableEntryIsNonEmptyList(old_table, i)) {
          TransferList(old_table, i);
        } else if (internal::TableEntryIsTree(old_table, i)) {
          TransferTree(old_table, i++);
        }
      }
      Dealloc<void*>(old_table, old_table_size);
    }

    void TransferList(void* const* table, size_type index) {
      Node* node = static_cast<Node*>(table[index]);
      do {
        Node* next = node->next;
        InsertUnique(BucketNumber(node->kv.first), node);
        node = next;
      } while (node != nullptr);
    }

    void TransferTree(void* const* table, size_type index) {
      Tree* tree = static_cast<Tree*>(table[index]);
      typename Tree::iterator tree_it = tree->begin();
      do {
        InsertUnique(BucketNumber(std::cref(tree_it->first).get()),
                     NodeFromTreeIterator(tree_it));
      } while (++tree_it != tree->end());
      DestroyTree(tree);
    }

    Node* EraseFromLinkedList(Node* item, Node* head) {
      if (head == item) {
        return head->next;
      } else {
        head->next = EraseFromLinkedList(item, head->next);
        return head;
      }
    }

    bool TableEntryIsEmpty(size_type b) const {
      return internal::TableEntryIsEmpty(table_, b);
    }
    bool TableEntryIsNonEmptyList(size_type b) const {
      return internal::TableEntryIsNonEmptyList(table_, b);
    }
    bool TableEntryIsTree(size_type b) const {
      return internal::TableEntryIsTree(table_, b);
    }
    bool TableEntryIsList(size_type b) const {
      return internal::TableEntryIsList(table_, b);
    }

    void TreeConvert(size_type b) {
      GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
      Tree* tree =
          Arena::Create<Tree>(alloc_.arena(), typename Tree::key_compare(),
                              typename Tree::allocator_type(alloc_));
      size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
      GOOGLE_DCHECK_EQ(count, tree->size());
      table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
    }

    // Copy a linked list in the given bucket to a tree.
    // Returns the number of things it copied.
    size_type CopyListToTree(size_type b, Tree* tree) {
      size_type count = 0;
      Node* node = static_cast<Node*>(table_[b]);
      while (node != nullptr) {
        tree->insert({node->kv.first, node});
        ++count;
        Node* next = node->next;
        node->next = nullptr;
        node = next;
      }
      return count;
    }

    // Return whether table_[b] is a linked list that seems awfully long.
    // Requires table_[b] to point to a non-empty linked list.
    bool TableEntryIsTooLong(size_type b) {
      const size_type kMaxLength = 8;
      size_type count = 0;
      Node* node = static_cast<Node*>(table_[b]);
      do {
        ++count;
        node = node->next;
      } while (node != nullptr);
      // Invariant: no linked list ever is more than kMaxLength in length.
      GOOGLE_DCHECK_LE(count, kMaxLength);
      return count >= kMaxLength;
    }

    template <typename K>
    size_type BucketNumber(const K& k) const {
      // We xor the hash value against the random seed so that we effectively
      // have a random hash function.
      uint64_t h = hash_function()(k) ^ seed_;

      // We use the multiplication method to determine the bucket number from
      // the hash value. The constant kPhi (suggested by Knuth) is roughly
      // (sqrt(5) - 1) / 2 * 2^64.
      constexpr uint64_t kPhi = uint64_t{0x9e3779b97f4a7c15};
      return ((kPhi * h) >> 32) & (num_buckets_ - 1);
    }

    // Return a power of two no less than max(kMinTableSize, n).
    // Assumes either n < kMinTableSize or n is a power of two.
    size_type TableSize(size_type n) {
      return n < static_cast<size_type>(kMinTableSize)
                 ? static_cast<size_type>(kMinTableSize)
                 : n;
    }

    // Use alloc_ to allocate an array of n objects of type U.
    template <typename U>
    U* Alloc(size_type n) {
      using alloc_type = typename Allocator::template rebind<U>::other;
      return alloc_type(alloc_).allocate(n);
    }

    // Use alloc_ to deallocate an array of n objects of type U.
    template <typename U>
    void Dealloc(U* t, size_type n) {
      using alloc_type = typename Allocator::template rebind<U>::other;
      alloc_type(alloc_).deallocate(t, n);
    }

    void DestroyNode(Node* node) {
      if (alloc_.arena() == nullptr) {
        delete node;
      }
    }

    void DestroyTree(Tree* tree) {
      if (alloc_.arena() == nullptr) {
        delete tree;
      }
    }

    void** CreateEmptyTable(size_type n) {
      GOOGLE_DCHECK(n >= kMinTableSize);
      GOOGLE_DCHECK_EQ(n & (n - 1), 0u);
      void** result = Alloc<void*>(n);
      memset(result, 0, n * sizeof(result[0]));
      return result;
    }

    // Return a randomish value.
    size_type Seed() const {
      // We get a little bit of randomness from the address of the map. The
      // lower bits are not very random, due to alignment, so we discard them
      // and shift the higher bits into their place.
      size_type s = reinterpret_cast<uintptr_t>(this) >> 4;
#if !defined(GOOGLE_PROTOBUF_NO_RDTSC)
#if defined(__APPLE__)
      // Use a commpage-based fast time function on Apple environments (MacOS,
      // iOS, tvOS, watchOS, etc).
      s += mach_absolute_time();
#elif defined(__x86_64__) && defined(__GNUC__)
      uint32_t hi, lo;
      asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
      s += ((static_cast<uint64_t>(hi) << 32) | lo);
#elif defined(__aarch64__) && defined(__GNUC__)
      // There is no rdtsc on ARMv8. CNTVCT_EL0 is the virtual counter of the
      // system timer. It runs at a different frequency than the CPU's, but is
      // the best source of time-based entropy we get.
      uint64_t virtual_timer_value;
      asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
      s += virtual_timer_value;
#endif
#endif  // !defined(GOOGLE_PROTOBUF_NO_RDTSC)
      return s;
    }

    friend class Arena;
    using InternalArenaConstructable_ = void;
    using DestructorSkippable_ = void;

    size_type num_elements_;
    size_type num_buckets_;
    size_type seed_;
    size_type index_of_first_non_null_;
    void** table_;  // an array with num_buckets_ entries
    Allocator alloc_;
    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
  };  // end of class InnerMap

  template <typename LookupKey>
  using key_arg = typename internal::TransparentSupport<
      key_type>::template key_arg<LookupKey>;

 public:
  // Iterators
  class const_iterator {
    using InnerIt = typename InnerMap::const_iterator;

   public:
    using iterator_category = std::forward_iterator_tag;
    using value_type = typename Map::value_type;
    using difference_type = ptrdiff_t;
    using pointer = const value_type*;
    using reference = const value_type&;

    const_iterator() {}
    explicit const_iterator(const InnerIt& it) : it_(it) {}

    const_reference operator*() const { return *it_; }
    const_pointer operator->() const { return &(operator*()); }

    const_iterator& operator++() {
      ++it_;
      return *this;
    }
    const_iterator operator++(int) { return const_iterator(it_++); }

    friend bool operator==(const const_iterator& a, const const_iterator& b) {
      return a.it_ == b.it_;
    }
    friend bool operator!=(const const_iterator& a, const const_iterator& b) {
      return !(a == b);
    }

   private:
    InnerIt it_;
  };

  class iterator {
    using InnerIt = typename InnerMap::iterator;

   public:
    using iterator_category = std::forward_iterator_tag;
    using value_type = typename Map::value_type;
    using difference_type = ptrdiff_t;
    using pointer = value_type*;
    using reference = value_type&;

    iterator() {}
    explicit iterator(const InnerIt& it) : it_(it) {}

    reference operator*() const { return *it_; }
    pointer operator->() const { return &(operator*()); }

    iterator& operator++() {
      ++it_;
      return *this;
    }
    iterator operator++(int) { return iterator(it_++); }

    // Allow implicit conversion to const_iterator.
    operator const_iterator() const {  // NOLINT(runtime/explicit)
      return const_iterator(typename InnerMap::const_iterator(it_));
    }

    friend bool operator==(const iterator& a, const iterator& b) {
      return a.it_ == b.it_;
    }
    friend bool operator!=(const iterator& a, const iterator& b) {
      return !(a == b);
    }

   private:
    friend class Map;

    InnerIt it_;
  };

  iterator begin() { return iterator(elements_.begin()); }
  iterator end() { return iterator(elements_.end()); }
  const_iterator begin() const { return const_iterator(elements_.begin()); }
  const_iterator end() const { return const_iterator(elements_.end()); }
  const_iterator cbegin() const { return begin(); }
  const_iterator cend() const { return end(); }

  // Capacity
  size_type size() const { return elements_.size(); }
  bool empty() const { return size() == 0; }

  // Element access
  template <typename K = key_type>
  T& operator[](const key_arg<K>& key) {
    return elements_[key].second;
  }
  template <
      typename K = key_type,
      // Disable for integral types to reduce code bloat.
      typename = typename std::enable_if<!std::is_integral<K>::value>::type>
  T& operator[](key_arg<K>&& key) {
    return elements_[std::forward<K>(key)].second;
  }

  template <typename K = key_type>
  const T& at(const key_arg<K>& key) const {
    const_iterator it = find(key);
    GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
    return it->second;
  }

  template <typename K = key_type>
  T& at(const key_arg<K>& key) {
    iterator it = find(key);
    GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
    return it->second;
  }

  // Lookup
  template <typename K = key_type>
  size_type count(const key_arg<K>& key) const {
    return find(key) == end() ? 0 : 1;
  }

  template <typename K = key_type>
  const_iterator find(const key_arg<K>& key) const {
    return const_iterator(elements_.find(key));
  }
  template <typename K = key_type>
  iterator find(const key_arg<K>& key) {
    return iterator(elements_.find(key));
  }

  template <typename K = key_type>
  bool contains(const key_arg<K>& key) const {
    return find(key) != end();
  }

  template <typename K = key_type>
  std::pair<const_iterator, const_iterator> equal_range(
      const key_arg<K>& key) const {
    const_iterator it = find(key);
    if (it == end()) {
      return std::pair<const_iterator, const_iterator>(it, it);
    } else {
      const_iterator begin = it++;
      return std::pair<const_iterator, const_iterator>(begin, it);
    }
  }

  template <typename K = key_type>
  std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
    iterator it = find(key);
    if (it == end()) {
      return std::pair<iterator, iterator>(it, it);
    } else {
      iterator begin = it++;
      return std::pair<iterator, iterator>(begin, it);
    }
  }

  // insert
  template <typename K, typename... Args>
  std::pair<iterator, bool> try_emplace(K&& k, Args&&... args) {
    auto p =
        elements_.try_emplace(std::forward<K>(k), std::forward<Args>(args)...);
    return std::pair<iterator, bool>(iterator(p.first), p.second);
  }
  std::pair<iterator, bool> insert(const value_type& value) {
    return try_emplace(value.first, value.second);
  }
  std::pair<iterator, bool> insert(value_type&& value) {
    return try_emplace(value.first, std::move(value.second));
  }
  template <typename... Args>
  std::pair<iterator, bool> emplace(Args&&... args) {
    return insert(value_type(std::forward<Args>(args)...));
  }
  template <class InputIt>
  void insert(InputIt first, InputIt last) {
    for (; first != last; ++first) {
      try_emplace(first->first, first->second);
    }
  }
  void insert(std::initializer_list<value_type> values) {
    insert(values.begin(), values.end());
  }

  // Erase and clear
  template <typename K = key_type>
  size_type erase(const key_arg<K>& key) {
    iterator it = find(key);
    if (it == end()) {
      return 0;
    } else {
      erase(it);
      return 1;
    }
  }
  iterator erase(iterator pos) {
    iterator i = pos++;
    elements_.erase(i.it_);
    return pos;
  }
  void erase(iterator first, iterator last) {
    while (first != last) {
      first = erase(first);
    }
  }
  void clear() { elements_.clear(); }

  // Assign
  Map& operator=(const Map& other) {
    if (this != &other) {
      clear();
      insert(other.begin(), other.end());
    }
    return *this;
  }

  void swap(Map& other) {
    if (arena() == other.arena()) {
      InternalSwap(other);
    } else {
      // TODO(zuguang): optimize this. The temporary copy can be allocated
      // in the same arena as the other message, and the "other = copy" can
      // be replaced with the fast-path swap above.
      Map copy = *this;
      *this = other;
      other = copy;
    }
  }

  void InternalSwap(Map& other) { elements_.Swap(&other.elements_); }

  // Access to hasher.  Currently this returns a copy, but it may
  // be modified to return a const reference in the future.
  hasher hash_function() const { return elements_.hash_function(); }

  size_t SpaceUsedExcludingSelfLong() const {
    if (empty()) return 0;
    return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this);
  }

 private:
  Arena* arena() const { return elements_.arena(); }
  InnerMap elements_;

  friend class Arena;
  using InternalArenaConstructable_ = void;
  using DestructorSkippable_ = void;
  template <typename Derived, typename K, typename V,
            internal::WireFormatLite::FieldType key_wire_type,
            internal::WireFormatLite::FieldType value_wire_type>
  friend class internal::MapFieldLite;
};

}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_MAP_H__