repeated_field.h 42.0 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields.  These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers.  RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// This header covers RepeatedField.

#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__


#include <algorithm>
#include <iterator>
#include <limits>
#include <string>
#include <type_traits>
#include <utility>

#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/port.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/repeated_ptr_field.h>


// Must be included last.
#include <google/protobuf/port_def.inc>

#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif

namespace google {
namespace protobuf {

class Message;

namespace internal {

template <typename T, int kRepHeaderSize>
constexpr int RepeatedFieldLowerClampLimit() {
  // The header is padded to be at least `sizeof(T)` when it would be smaller
  // otherwise.
  static_assert(sizeof(T) <= kRepHeaderSize, "");
  // We want to pad the minimum size to be a power of two bytes, including the
  // header.
  // The first allocation is kRepHeaderSize bytes worth of elements for a total
  // of 2*kRepHeaderSize bytes.
  // For an 8-byte header, we allocate 8 bool, 2 ints, or 1 int64.
  return kRepHeaderSize / sizeof(T);
}

// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
// overflows when multiplied by 2 (which is undefined behavior). Sizes above
// this will clamp to the maximum int value instead of following exponential
// growth when growing a repeated field.
constexpr int kRepeatedFieldUpperClampLimit =
    (std::numeric_limits<int>::max() / 2) + 1;

template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
  return static_cast<int>(std::distance(begin, end));
}

template <typename Iter>
inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
                            std::input_iterator_tag /*unused*/) {
  return -1;
}

template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end) {
  typedef typename std::iterator_traits<Iter>::iterator_category Category;
  return CalculateReserve(begin, end, Category());
}

// Swaps two blocks of memory of size sizeof(T).
template <typename T>
inline void SwapBlock(char* p, char* q) {
  T tmp;
  memcpy(&tmp, p, sizeof(T));
  memcpy(p, q, sizeof(T));
  memcpy(q, &tmp, sizeof(T));
}

// Swaps two blocks of memory of size kSize:
//  template <int kSize> void memswap(char* p, char* q);
template <int kSize>
inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) {
}

#define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size)                           \
  template <int kSize>                                                       \
  typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \
                          void>::type                                        \
  memswap(char* p, char* q) {                                                \
    SwapBlock<reg_type>(p, q);                                               \
    memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type),                  \
                                      q + sizeof(reg_type));                 \
  }

PROTO_MEMSWAP_DEF_SIZE(uint8_t, 2)
PROTO_MEMSWAP_DEF_SIZE(uint16_t, 4)
PROTO_MEMSWAP_DEF_SIZE(uint32_t, 8)

#ifdef __SIZEOF_INT128__
PROTO_MEMSWAP_DEF_SIZE(uint64_t, 16)
PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31))
#else
PROTO_MEMSWAP_DEF_SIZE(uint64_t, (1u << 31))
#endif

#undef PROTO_MEMSWAP_DEF_SIZE

template <typename Element>
class RepeatedIterator;

}  // namespace internal

// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages).  Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
template <typename Element>
class RepeatedField final {
  static_assert(
      alignof(Arena) >= alignof(Element),
      "We only support types that have an alignment smaller than Arena");

 public:
  constexpr RepeatedField();
  explicit RepeatedField(Arena* arena);

  RepeatedField(const RepeatedField& other);

  template <typename Iter,
            typename = typename std::enable_if<std::is_constructible<
                Element, decltype(*std::declval<Iter>())>::value>::type>
  RepeatedField(Iter begin, Iter end);

  ~RepeatedField();

  RepeatedField& operator=(const RepeatedField& other);

  RepeatedField(RepeatedField&& other) noexcept;
  RepeatedField& operator=(RepeatedField&& other) noexcept;

  bool empty() const;
  int size() const;

  const Element& Get(int index) const;
  Element* Mutable(int index);

  const Element& operator[](int index) const { return Get(index); }
  Element& operator[](int index) { return *Mutable(index); }

  const Element& at(int index) const;
  Element& at(int index);

  void Set(int index, const Element& value);
  void Add(const Element& value);
  // Appends a new element and returns a pointer to it.
  // The new element is uninitialized if |Element| is a POD type.
  Element* Add();
  // Appends elements in the range [begin, end) after reserving
  // the appropriate number of elements.
  template <typename Iter>
  void Add(Iter begin, Iter end);

  // Removes the last element in the array.
  void RemoveLast();

  // Extracts elements with indices in "[start .. start+num-1]".
  // Copies them into "elements[0 .. num-1]" if "elements" is not nullptr.
  // Caution: also moves elements with indices [start+num ..].
  // Calling this routine inside a loop can cause quadratic behavior.
  void ExtractSubrange(int start, int num, Element* elements);

  PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear();
  void MergeFrom(const RepeatedField& other);
  PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedField& other);

  // Replaces the contents with RepeatedField(begin, end).
  template <typename Iter>
  PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);

  // Reserves space to expand the field to at least the given size.  If the
  // array is grown, it will always be at least doubled in size.
  void Reserve(int new_size);

  // Resizes the RepeatedField to a new, smaller size.  This is O(1).
  void Truncate(int new_size);

  void AddAlreadyReserved(const Element& value);
  // Appends a new element and return a pointer to it.
  // The new element is uninitialized if |Element| is a POD type.
  // Should be called only if Capacity() > Size().
  Element* AddAlreadyReserved();
  Element* AddNAlreadyReserved(int elements);
  int Capacity() const;

  // Like STL resize.  Uses value to fill appended elements.
  // Like Truncate() if new_size <= size(), otherwise this is
  // O(new_size - size()).
  void Resize(int new_size, const Element& value);

  // Gets the underlying array.  This pointer is possibly invalidated by
  // any add or remove operation.
  Element* mutable_data();
  const Element* data() const;

  // Swaps entire contents with "other". If they are separate arenas then,
  // copies data between each other.
  void Swap(RepeatedField* other);

  // Swaps entire contents with "other". Should be called only if the caller can
  // guarantee that both repeated fields are on the same arena or are on the
  // heap. Swapping between different arenas is disallowed and caught by a
  // GOOGLE_DCHECK (see API docs for details).
  void UnsafeArenaSwap(RepeatedField* other);

  // Swaps two elements.
  void SwapElements(int index1, int index2);

  // STL-like iterator support
  typedef internal::RepeatedIterator<Element> iterator;
  typedef internal::RepeatedIterator<const Element> const_iterator;
  typedef Element value_type;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef int size_type;
  typedef ptrdiff_t difference_type;

  iterator begin();
  const_iterator begin() const;
  const_iterator cbegin() const;
  iterator end();
  const_iterator end() const;
  const_iterator cend() const;

  // Reverse iterator support
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  typedef std::reverse_iterator<iterator> reverse_iterator;
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  // Returns the number of bytes used by the repeated field, excluding
  // sizeof(*this)
  size_t SpaceUsedExcludingSelfLong() const;

  int SpaceUsedExcludingSelf() const {
    return internal::ToIntSize(SpaceUsedExcludingSelfLong());
  }

  // Removes the element referenced by position.
  //
  // Returns an iterator to the element immediately following the removed
  // element.
  //
  // Invalidates all iterators at or after the removed element, including end().
  iterator erase(const_iterator position);

  // Removes the elements in the range [first, last).
  //
  // Returns an iterator to the element immediately following the removed range.
  //
  // Invalidates all iterators at or after the removed range, including end().
  iterator erase(const_iterator first, const_iterator last);

  // Gets the Arena on which this RepeatedField stores its elements.
  inline Arena* GetArena() const {
    return GetOwningArena();
  }

  // For internal use only.
  //
  // This is public due to it being called by generated code.
  inline void InternalSwap(RepeatedField* other);

 private:
  template <typename T> friend class Arena::InternalHelper;

  // Gets the Arena on which this RepeatedField stores its elements.
  inline Arena* GetOwningArena() const {
    return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_)
                              : rep()->arena;
  }

  static constexpr int kInitialSize = 0;
  // A note on the representation here (see also comment below for
  // RepeatedPtrFieldBase's struct Rep):
  //
  // We maintain the same sizeof(RepeatedField) as before we added arena support
  // so that we do not degrade performance by bloating memory usage. Directly
  // adding an arena_ element to RepeatedField is quite costly. By using
  // indirection in this way, we keep the same size when the RepeatedField is
  // empty (common case), and add only an 8-byte header to the elements array
  // when non-empty. We make sure to place the size fields directly in the
  // RepeatedField class to avoid costly cache misses due to the indirection.
  int current_size_;
  int total_size_;
  // Pad the Rep after arena allow for power-of-two byte sizes when
  // sizeof(Element) > sizeof(Arena*). eg for 16-byte objects.
  static PROTOBUF_CONSTEXPR const size_t kRepHeaderSize =
      sizeof(Arena*) < sizeof(Element) ? sizeof(Element) : sizeof(Arena*);
  struct Rep {
    Arena* arena;
    Element* elements() {
      return reinterpret_cast<Element*>(reinterpret_cast<char*>(this) +
                                        kRepHeaderSize);
    }
  };

  // If total_size_ == 0 this points to an Arena otherwise it points to the
  // elements member of a Rep struct. Using this invariant allows the storage of
  // the arena pointer without an extra allocation in the constructor.
  void* arena_or_elements_;

  // Returns a pointer to elements array.
  // pre-condition: the array must have been allocated.
  Element* elements() const {
    GOOGLE_DCHECK_GT(total_size_, 0);
    // Because of above pre-condition this cast is safe.
    return unsafe_elements();
  }

  // Returns a pointer to elements array if it exists; otherwise either null or
  // an invalid pointer is returned. This only happens for empty repeated
  // fields, where you can't dereference this pointer anyway (it's empty).
  Element* unsafe_elements() const {
    return static_cast<Element*>(arena_or_elements_);
  }

  // Returns a pointer to the Rep struct.
  // pre-condition: the Rep must have been allocated, ie elements() is safe.
  Rep* rep() const {
    return reinterpret_cast<Rep*>(reinterpret_cast<char*>(elements()) -
                                  kRepHeaderSize);
  }

  friend class Arena;
  typedef void InternalArenaConstructable_;

  // Moves the contents of |from| into |to|, possibly clobbering |from| in the
  // process.  For primitive types this is just a memcpy(), but it could be
  // specialized for non-primitive types to, say, swap each element instead.
  void MoveArray(Element* to, Element* from, int size);

  // Copies the elements of |from| into |to|.
  void CopyArray(Element* to, const Element* from, int size);

  // Internal helper to delete all elements and deallocate the storage.
  void InternalDeallocate(Rep* rep, int size, bool in_destructor) {
    if (rep != nullptr) {
      Element* e = &rep->elements()[0];
      if (!std::is_trivial<Element>::value) {
        Element* limit = &rep->elements()[size];
        for (; e < limit; e++) {
          e->~Element();
        }
      }
      const size_t bytes = size * sizeof(*e) + kRepHeaderSize;
      if (rep->arena == nullptr) {
        internal::SizedDelete(rep, bytes);
      } else if (!in_destructor) {
        // If we are in the destructor, we might be being destroyed as part of
        // the arena teardown. We can't try and return blocks to the arena then.
        rep->arena->ReturnArrayMemory(rep, bytes);
      }
    }
  }

  // This class is a performance wrapper around RepeatedField::Add(const T&)
  // function. In general unless a RepeatedField is a local stack variable LLVM
  // has a hard time optimizing Add. The machine code tends to be
  // loop:
  // mov %size, dword ptr [%repeated_field]       // load
  // cmp %size, dword ptr [%repeated_field + 4]
  // jae fallback
  // mov %buffer, qword ptr [%repeated_field + 8]
  // mov dword [%buffer + %size * 4], %value
  // inc %size                                    // increment
  // mov dword ptr [%repeated_field], %size       // store
  // jmp loop
  //
  // This puts a load/store in each iteration of the important loop variable
  // size. It's a pretty bad compile that happens even in simple cases, but
  // largely the presence of the fallback path disturbs the compilers mem-to-reg
  // analysis.
  //
  // This class takes ownership of a repeated field for the duration of its
  // lifetime. The repeated field should not be accessed during this time, ie.
  // only access through this class is allowed. This class should always be a
  // function local stack variable. Intended use
  //
  // void AddSequence(const int* begin, const int* end, RepeatedField<int>* out)
  // {
  //   RepeatedFieldAdder<int> adder(out);  // Take ownership of out
  //   for (auto it = begin; it != end; ++it) {
  //     adder.Add(*it);
  //   }
  // }
  //
  // Typically, due to the fact that adder is a local stack variable, the
  // compiler will be successful in mem-to-reg transformation and the machine
  // code will be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer
  // + %size * 4], %val inc %size jmp loop
  //
  // The first version executes at 7 cycles per iteration while the second
  // version executes at only 1 or 2 cycles.
  template <int = 0, bool = std::is_trivial<Element>::value>
  class FastAdderImpl {
   public:
    explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {
      index_ = repeated_field_->current_size_;
      capacity_ = repeated_field_->total_size_;
      buffer_ = repeated_field_->unsafe_elements();
    }
    ~FastAdderImpl() { repeated_field_->current_size_ = index_; }

    void Add(Element val) {
      if (index_ == capacity_) {
        repeated_field_->current_size_ = index_;
        repeated_field_->Reserve(index_ + 1);
        capacity_ = repeated_field_->total_size_;
        buffer_ = repeated_field_->unsafe_elements();
      }
      buffer_[index_++] = val;
    }

   private:
    RepeatedField* repeated_field_;
    int index_;
    int capacity_;
    Element* buffer_;

    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
  };

  // FastAdder is a wrapper for adding fields. The specialization above handles
  // POD types more efficiently than RepeatedField.
  template <int I>
  class FastAdderImpl<I, false> {
   public:
    explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {}
    void Add(const Element& val) { repeated_field_->Add(val); }

   private:
    RepeatedField* repeated_field_;
    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
  };

  using FastAdder = FastAdderImpl<>;

  friend class TestRepeatedFieldHelper;
  friend class ::google::protobuf::internal::ParseContext;
};

namespace internal {

// This is a helper template to copy an array of elements efficiently when they
// have a trivial copy constructor, and correctly otherwise. This really
// shouldn't be necessary, but our compiler doesn't optimize std::copy very
// effectively.
template <typename Element,
          bool HasTrivialCopy = std::is_trivial<Element>::value>
struct ElementCopier {
  void operator()(Element* to, const Element* from, int array_size);
};

}  // namespace internal

// implementation ====================================================

template <typename Element>
constexpr RepeatedField<Element>::RepeatedField()
    : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {}

template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena)
    : current_size_(0), total_size_(0), arena_or_elements_(arena) {}

template <typename Element>
inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
    : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
  if (other.current_size_ != 0) {
    Reserve(other.size());
    AddNAlreadyReserved(other.size());
    CopyArray(Mutable(0), &other.Get(0), other.size());
  }
}

template <typename Element>
template <typename Iter, typename>
RepeatedField<Element>::RepeatedField(Iter begin, Iter end)
    : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
  Add(begin, end);
}

template <typename Element>
RepeatedField<Element>::~RepeatedField() {
#ifndef NDEBUG
  // Try to trigger segfault / asan failure in non-opt builds if arena_
  // lifetime has ended before the destructor.
  auto arena = GetOwningArena();
  if (arena) (void)arena->SpaceAllocated();
#endif
  if (total_size_ > 0) {
    InternalDeallocate(rep(), total_size_, true);
  }
}

template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
    const RepeatedField& other) {
  if (this != &other) CopyFrom(other);
  return *this;
}

template <typename Element>
inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept
    : RepeatedField() {
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
  CopyFrom(other);
#else   // PROTOBUF_FORCE_COPY_IN_MOVE
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // other is on an arena. This field can't be on an arena because arena
  // construction always uses the Arena* accepting constructor.
  if (other.GetOwningArena()) {
    CopyFrom(other);
  } else {
    InternalSwap(&other);
  }
#endif  // !PROTOBUF_FORCE_COPY_IN_MOVE
}

template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
    RepeatedField&& other) noexcept {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // the two fields are on different arenas.
  if (this != &other) {
    if (GetOwningArena() != other.GetOwningArena()
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
        || GetOwningArena() == nullptr
#endif  // !PROTOBUF_FORCE_COPY_IN_MOVE
    ) {
      CopyFrom(other);
    } else {
      InternalSwap(&other);
    }
  }
  return *this;
}

template <typename Element>
inline bool RepeatedField<Element>::empty() const {
  return current_size_ == 0;
}

template <typename Element>
inline int RepeatedField<Element>::size() const {
  return current_size_;
}

template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
  return total_size_;
}

template <typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
  GOOGLE_DCHECK_LT(current_size_, total_size_);
  elements()[current_size_++] = value;
}

template <typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved() {
  GOOGLE_DCHECK_LT(current_size_, total_size_);
  return &elements()[current_size_++];
}

template <typename Element>
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int elements) {
  GOOGLE_DCHECK_GE(total_size_ - current_size_, elements)
      << total_size_ << ", " << current_size_;
  // Warning: sometimes people call this when elements == 0 and
  // total_size_ == 0. In this case the return pointer points to a zero size
  // array (n == 0). Hence we can just use unsafe_elements(), because the user
  // cannot dereference the pointer anyway.
  Element* ret = unsafe_elements() + current_size_;
  current_size_ += elements;
  return ret;
}

template <typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
  GOOGLE_DCHECK_GE(new_size, 0);
  if (new_size > current_size_) {
    Reserve(new_size);
    std::fill(&elements()[current_size_], &elements()[new_size], value);
  }
  current_size_ = new_size;
}

template <typename Element>
inline const Element& RepeatedField<Element>::Get(int index) const {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return elements()[index];
}

template <typename Element>
inline const Element& RepeatedField<Element>::at(int index) const {
  GOOGLE_CHECK_GE(index, 0);
  GOOGLE_CHECK_LT(index, current_size_);
  return elements()[index];
}

template <typename Element>
inline Element& RepeatedField<Element>::at(int index) {
  GOOGLE_CHECK_GE(index, 0);
  GOOGLE_CHECK_LT(index, current_size_);
  return elements()[index];
}

template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return &elements()[index];
}

template <typename Element>
inline void RepeatedField<Element>::Set(int index, const Element& value) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  elements()[index] = value;
}

template <typename Element>
inline void RepeatedField<Element>::Add(const Element& value) {
  uint32_t size = current_size_;
  if (static_cast<int>(size) == total_size_) {
    // value could reference an element of the array. Reserving new space will
    // invalidate the reference. So we must make a copy first.
    auto tmp = value;
    Reserve(total_size_ + 1);
    elements()[size] = std::move(tmp);
  } else {
    elements()[size] = value;
  }
  current_size_ = size + 1;
}

template <typename Element>
inline Element* RepeatedField<Element>::Add() {
  uint32_t size = current_size_;
  if (static_cast<int>(size) == total_size_) Reserve(total_size_ + 1);
  auto ptr = &elements()[size];
  current_size_ = size + 1;
  return ptr;
}

template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
  int reserve = internal::CalculateReserve(begin, end);
  if (reserve != -1) {
    if (reserve == 0) {
      return;
    }

    Reserve(reserve + size());
    // TODO(ckennelly):  The compiler loses track of the buffer freshly
    // allocated by Reserve() by the time we call elements, so it cannot
    // guarantee that elements does not alias [begin(), end()).
    //
    // If restrict is available, annotating the pointer obtained from elements()
    // causes this to lower to memcpy instead of memmove.
    std::copy(begin, end, elements() + size());
    current_size_ = reserve + size();
  } else {
    FastAdder fast_adder(this);
    for (; begin != end; ++begin) fast_adder.Add(*begin);
  }
}

template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
  GOOGLE_DCHECK_GT(current_size_, 0);
  current_size_--;
}

template <typename Element>
void RepeatedField<Element>::ExtractSubrange(int start, int num,
                                             Element* elements) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, this->current_size_);

  // Save the values of the removed elements if requested.
  if (elements != nullptr) {
    for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start);
  }

  // Slide remaining elements down to fill the gap.
  if (num > 0) {
    for (int i = start + num; i < this->current_size_; ++i)
      this->Set(i - num, this->Get(i));
    this->Truncate(this->current_size_ - num);
  }
}

template <typename Element>
inline void RepeatedField<Element>::Clear() {
  current_size_ = 0;
}

template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
  GOOGLE_DCHECK_NE(&other, this);
  if (other.current_size_ != 0) {
    int existing_size = size();
    Reserve(existing_size + other.size());
    AddNAlreadyReserved(other.size());
    CopyArray(Mutable(existing_size), &other.Get(0), other.size());
  }
}

template <typename Element>
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
  if (&other == this) return;
  Clear();
  MergeFrom(other);
}

template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Assign(Iter begin, Iter end) {
  Clear();
  Add(begin, end);
}

template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
    const_iterator position) {
  return erase(position, position + 1);
}

template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
    const_iterator first, const_iterator last) {
  size_type first_offset = first - cbegin();
  if (first != last) {
    Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
  }
  return begin() + first_offset;
}

template <typename Element>
inline Element* RepeatedField<Element>::mutable_data() {
  return unsafe_elements();
}

template <typename Element>
inline const Element* RepeatedField<Element>::data() const {
  return unsafe_elements();
}

template <typename Element>
inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) {
  GOOGLE_DCHECK(this != other);

  // Swap all fields at once.
  static_assert(std::is_standard_layout<RepeatedField<Element>>::value,
                "offsetof() requires standard layout before c++17");
  internal::memswap<offsetof(RepeatedField, arena_or_elements_) +
                    sizeof(this->arena_or_elements_) -
                    offsetof(RepeatedField, current_size_)>(
      reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_),
      reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_));
}

template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
  if (this == other) return;
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
  if (GetOwningArena() != nullptr &&
      GetOwningArena() == other->GetOwningArena()) {
#else   // PROTOBUF_FORCE_COPY_IN_SWAP
  if (GetOwningArena() == other->GetOwningArena()) {
#endif  // !PROTOBUF_FORCE_COPY_IN_SWAP
    InternalSwap(other);
  } else {
    RepeatedField<Element> temp(other->GetOwningArena());
    temp.MergeFrom(*this);
    CopyFrom(*other);
    other->UnsafeArenaSwap(&temp);
  }
}

template <typename Element>
void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
  if (this == other) return;
  GOOGLE_DCHECK_EQ(GetOwningArena(), other->GetOwningArena());
  InternalSwap(other);
}

template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
  using std::swap;  // enable ADL with fallback
  swap(elements()[index1], elements()[index2]);
}

template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::begin() {
  return iterator(unsafe_elements());
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const {
  return const_iterator(unsafe_elements());
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cbegin() const {
  return const_iterator(unsafe_elements());
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() {
  return iterator(unsafe_elements() + current_size_);
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const {
  return const_iterator(unsafe_elements() + current_size_);
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cend() const {
  return const_iterator(unsafe_elements() + current_size_);
}

template <typename Element>
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
  return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0;
}

namespace internal {
// Returns the new size for a reserved field based on its 'total_size' and the
// requested 'new_size'. The result is clamped to the closed interval:
//   [internal::kMinRepeatedFieldAllocationSize,
//    std::numeric_limits<int>::max()]
// Requires:
//     new_size > total_size &&
//     (total_size == 0 ||
//      total_size >= kRepeatedFieldLowerClampLimit)
template <typename T, int kRepHeaderSize>
inline int CalculateReserveSize(int total_size, int new_size) {
  constexpr int lower_limit = RepeatedFieldLowerClampLimit<T, kRepHeaderSize>();
  if (new_size < lower_limit) {
    // Clamp to smallest allowed size.
    return lower_limit;
  }
  constexpr int kMaxSizeBeforeClamp =
      (std::numeric_limits<int>::max() - kRepHeaderSize) / 2;
  if (PROTOBUF_PREDICT_FALSE(total_size > kMaxSizeBeforeClamp)) {
    return std::numeric_limits<int>::max();
  }
  // We want to double the number of bytes, not the number of elements, to try
  // to stay within power-of-two allocations.
  // The allocation has kRepHeaderSize + sizeof(T) * capacity.
  int doubled_size = 2 * total_size + kRepHeaderSize / sizeof(T);
  return std::max(doubled_size, new_size);
}
}  // namespace internal

// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
  if (total_size_ >= new_size) return;
  Rep* old_rep = total_size_ > 0 ? rep() : nullptr;
  Rep* new_rep;
  Arena* arena = GetOwningArena();

  new_size = internal::CalculateReserveSize<Element, kRepHeaderSize>(
      total_size_, new_size);

  GOOGLE_DCHECK_LE(
      static_cast<size_t>(new_size),
      (std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element))
      << "Requested size is too large to fit into size_t.";
  size_t bytes =
      kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
  if (arena == nullptr) {
    new_rep = static_cast<Rep*>(::operator new(bytes));
  } else {
    new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, bytes));
  }
  new_rep->arena = arena;
  int old_total_size = total_size_;
  // Already known: new_size >= internal::kMinRepeatedFieldAllocationSize
  // Maintain invariant:
  //     total_size_ == 0 ||
  //     total_size_ >= internal::kMinRepeatedFieldAllocationSize
  total_size_ = new_size;
  arena_or_elements_ = new_rep->elements();
  // Invoke placement-new on newly allocated elements. We shouldn't have to do
  // this, since Element is supposed to be POD, but a previous version of this
  // code allocated storage with "new Element[size]" and some code uses
  // RepeatedField with non-POD types, relying on constructor invocation. If
  // Element has a trivial constructor (e.g., int32_t), gcc (tested with -O2)
  // completely removes this loop because the loop body is empty, so this has no
  // effect unless its side-effects are required for correctness.
  // Note that we do this before MoveArray() below because Element's copy
  // assignment implementation will want an initialized instance first.
  Element* e = &elements()[0];
  Element* limit = e + total_size_;
  for (; e < limit; e++) {
    new (e) Element;
  }
  if (current_size_ > 0) {
    MoveArray(&elements()[0], old_rep->elements(), current_size_);
  }

  // Likewise, we need to invoke destructors on the old array.
  InternalDeallocate(old_rep, old_total_size, false);

}

template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
  GOOGLE_DCHECK_LE(new_size, current_size_);
  if (current_size_ > 0) {
    current_size_ = new_size;
  }
}

template <typename Element>
inline void RepeatedField<Element>::MoveArray(Element* to, Element* from,
                                              int array_size) {
  CopyArray(to, from, array_size);
}

template <typename Element>
inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from,
                                              int array_size) {
  internal::ElementCopier<Element>()(to, from, array_size);
}

namespace internal {

template <typename Element, bool HasTrivialCopy>
void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to,
                                                        const Element* from,
                                                        int array_size) {
  std::copy(from, from + array_size, to);
}

template <typename Element>
struct ElementCopier<Element, true> {
  void operator()(Element* to, const Element* from, int array_size) {
    memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element));
  }
};

}  // namespace internal


// -------------------------------------------------------------------

// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
//   std::copy(some_sequence.begin(), some_sequence.end(),
//             RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h

namespace internal {

// STL-like iterator implementation for RepeatedField.  You should not
// refer to this class directly; use RepeatedField<T>::iterator instead.
//
// Note: All of the iterator operators *must* be inlined to avoid performance
// regressions.  This is caused by the extern template declarations below (which
// are required because of the RepeatedField extern template declarations).  If
// any of these functions aren't explicitly inlined (e.g. defined in the class),
// the compiler isn't allowed to inline them.
template <typename Element>
class RepeatedIterator {
 public:
  using iterator_category = std::random_access_iterator_tag;
  // Note: remove_const is necessary for std::partial_sum, which uses value_type
  // to determine the summation variable type.
  using value_type = typename std::remove_const<Element>::type;
  using difference_type = std::ptrdiff_t;
  using pointer = Element*;
  using reference = Element&;

  constexpr RepeatedIterator() noexcept : it_(nullptr) {}

  // Allows "upcasting" from RepeatedIterator<T**> to
  // RepeatedIterator<const T*const*>.
  template <typename OtherElement,
            typename std::enable_if<std::is_convertible<
                OtherElement*, pointer>::value>::type* = nullptr>
  constexpr RepeatedIterator(
      const RepeatedIterator<OtherElement>& other) noexcept
      : it_(other.it_) {}

  // dereferenceable
  constexpr reference operator*() const noexcept { return *it_; }
  constexpr pointer operator->() const noexcept { return it_; }

 private:
  // Helper alias to hide the internal type.
  using iterator = RepeatedIterator<Element>;

 public:
  // {inc,dec}rementable
  iterator& operator++() noexcept {
    ++it_;
    return *this;
  }
  iterator operator++(int) noexcept { return iterator(it_++); }
  iterator& operator--() noexcept {
    --it_;
    return *this;
  }
  iterator operator--(int) noexcept { return iterator(it_--); }

  // equality_comparable
  friend constexpr bool operator==(const iterator& x,
                                   const iterator& y) noexcept {
    return x.it_ == y.it_;
  }
  friend constexpr bool operator!=(const iterator& x,
                                   const iterator& y) noexcept {
    return x.it_ != y.it_;
  }

  // less_than_comparable
  friend constexpr bool operator<(const iterator& x,
                                  const iterator& y) noexcept {
    return x.it_ < y.it_;
  }
  friend constexpr bool operator<=(const iterator& x,
                                   const iterator& y) noexcept {
    return x.it_ <= y.it_;
  }
  friend constexpr bool operator>(const iterator& x,
                                  const iterator& y) noexcept {
    return x.it_ > y.it_;
  }
  friend constexpr bool operator>=(const iterator& x,
                                   const iterator& y) noexcept {
    return x.it_ >= y.it_;
  }

  // addable, subtractable
  iterator& operator+=(difference_type d) noexcept {
    it_ += d;
    return *this;
  }
  constexpr iterator operator+(difference_type d) const noexcept {
    return iterator(it_ + d);
  }
  friend constexpr iterator operator+(const difference_type d,
                                      iterator it) noexcept {
    return it + d;
  }

  iterator& operator-=(difference_type d) noexcept {
    it_ -= d;
    return *this;
  }
  iterator constexpr operator-(difference_type d) const noexcept {
    return iterator(it_ - d);
  }

  // indexable
  constexpr reference operator[](difference_type d) const noexcept {
    return it_[d];
  }

  // random access iterator
  friend constexpr difference_type operator-(iterator it1,
                                             iterator it2) noexcept {
    return it1.it_ - it2.it_;
  }

 private:
  template <typename OtherElement>
  friend class RepeatedIterator;

  // Allow construction from RepeatedField.
  friend class RepeatedField<value_type>;
  explicit RepeatedIterator(Element* it) noexcept : it_(it) {}

  // The internal iterator.
  Element* it_;
};

// A back inserter for RepeatedField objects.
template <typename T>
class RepeatedFieldBackInsertIterator {
 public:
  using iterator_category = std::output_iterator_tag;
  using value_type = T;
  using pointer = void;
  using reference = void;
  using difference_type = std::ptrdiff_t;

  explicit RepeatedFieldBackInsertIterator(
      RepeatedField<T>* const mutable_field)
      : field_(mutable_field) {}
  RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
    field_->Add(value);
    return *this;
  }
  RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
  RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
  RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
    return *this;
  }

 private:
  RepeatedField<T>* field_;
};

}  // namespace internal

// Provides a back insert iterator for RepeatedField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
    RepeatedField<T>* const mutable_field) {
  return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
}

// Extern declarations of common instantiations to reduce library bloat.
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>;

namespace internal {
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<bool>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
    RepeatedIterator<int32_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
    RepeatedIterator<uint32_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
    RepeatedIterator<int64_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
    RepeatedIterator<uint64_t>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<float>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<double>;
}  // namespace internal

}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_REPEATED_FIELD_H__