parse_context.h 38.0 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef GOOGLE_PROTOBUF_PARSE_CONTEXT_H__
#define GOOGLE_PROTOBUF_PARSE_CONTEXT_H__

#include <cstdint>
#include <cstring>
#include <string>
#include <type_traits>

#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/port.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/arenastring.h>
#include <google/protobuf/endian.h>
#include <google/protobuf/implicit_weak_message.h>
#include <google/protobuf/inlined_string_field.h>
#include <google/protobuf/metadata_lite.h>
#include <google/protobuf/repeated_field.h>
#include <google/protobuf/wire_format_lite.h>

// Must be included last.
#include <google/protobuf/port_def.inc>


namespace google {
namespace protobuf {

class UnknownFieldSet;
class DescriptorPool;
class MessageFactory;

namespace internal {

// Template code below needs to know about the existence of these functions.
PROTOBUF_EXPORT void WriteVarint(uint32_t num, uint64_t val, std::string* s);
PROTOBUF_EXPORT void WriteLengthDelimited(uint32_t num, StringPiece val,
                                          std::string* s);
// Inline because it is just forwarding to s->WriteVarint
inline void WriteVarint(uint32_t num, uint64_t val, UnknownFieldSet* s);
inline void WriteLengthDelimited(uint32_t num, StringPiece val,
                                 UnknownFieldSet* s);


// The basic abstraction the parser is designed for is a slight modification
// of the ZeroCopyInputStream (ZCIS) abstraction. A ZCIS presents a serialized
// stream as a series of buffers that concatenate to the full stream.
// Pictorially a ZCIS presents a stream in chunks like so
// [---------------------------------------------------------------]
// [---------------------] chunk 1
//                      [----------------------------] chunk 2
//                                          chunk 3 [--------------]
//
// Where the '-' represent the bytes which are vertically lined up with the
// bytes of the stream. The proto parser requires its input to be presented
// similarly with the extra
// property that each chunk has kSlopBytes past its end that overlaps with the
// first kSlopBytes of the next chunk, or if there is no next chunk at least its
// still valid to read those bytes. Again, pictorially, we now have
//
// [---------------------------------------------------------------]
// [-------------------....] chunk 1
//                    [------------------------....] chunk 2
//                                    chunk 3 [------------------..**]
//                                                      chunk 4 [--****]
// Here '-' mean the bytes of the stream or chunk and '.' means bytes past the
// chunk that match up with the start of the next chunk. Above each chunk has
// 4 '.' after the chunk. In the case these 'overflow' bytes represents bytes
// past the stream, indicated by '*' above, their values are unspecified. It is
// still legal to read them (ie. should not segfault). Reading past the
// end should be detected by the user and indicated as an error.
//
// The reason for this, admittedly, unconventional invariant is to ruthlessly
// optimize the protobuf parser. Having an overlap helps in two important ways.
// Firstly it alleviates having to performing bounds checks if a piece of code
// is guaranteed to not read more than kSlopBytes. Secondly, and more
// importantly, the protobuf wireformat is such that reading a key/value pair is
// always less than 16 bytes. This removes the need to change to next buffer in
// the middle of reading primitive values. Hence there is no need to store and
// load the current position.

class PROTOBUF_EXPORT EpsCopyInputStream {
 public:
  enum { kSlopBytes = 16, kMaxCordBytesToCopy = 512 };

  explicit EpsCopyInputStream(bool enable_aliasing)
      : aliasing_(enable_aliasing ? kOnPatch : kNoAliasing) {}

  void BackUp(const char* ptr) {
    GOOGLE_DCHECK(ptr <= buffer_end_ + kSlopBytes);
    int count;
    if (next_chunk_ == buffer_) {
      count = static_cast<int>(buffer_end_ + kSlopBytes - ptr);
    } else {
      count = size_ + static_cast<int>(buffer_end_ - ptr);
    }
    if (count > 0) StreamBackUp(count);
  }

  // If return value is negative it's an error
  PROTOBUF_NODISCARD int PushLimit(const char* ptr, int limit) {
    GOOGLE_DCHECK(limit >= 0 && limit <= INT_MAX - kSlopBytes);
    // This add is safe due to the invariant above, because
    // ptr - buffer_end_ <= kSlopBytes.
    limit += static_cast<int>(ptr - buffer_end_);
    limit_end_ = buffer_end_ + (std::min)(0, limit);
    auto old_limit = limit_;
    limit_ = limit;
    return old_limit - limit;
  }

  PROTOBUF_NODISCARD bool PopLimit(int delta) {
    if (PROTOBUF_PREDICT_FALSE(!EndedAtLimit())) return false;
    limit_ = limit_ + delta;
    // TODO(gerbens) We could remove this line and hoist the code to
    // DoneFallback. Study the perf/bin-size effects.
    limit_end_ = buffer_end_ + (std::min)(0, limit_);
    return true;
  }

  PROTOBUF_NODISCARD const char* Skip(const char* ptr, int size) {
    if (size <= buffer_end_ + kSlopBytes - ptr) {
      return ptr + size;
    }
    return SkipFallback(ptr, size);
  }
  PROTOBUF_NODISCARD const char* ReadString(const char* ptr, int size,
                                            std::string* s) {
    if (size <= buffer_end_ + kSlopBytes - ptr) {
      s->assign(ptr, size);
      return ptr + size;
    }
    return ReadStringFallback(ptr, size, s);
  }
  PROTOBUF_NODISCARD const char* AppendString(const char* ptr, int size,
                                              std::string* s) {
    if (size <= buffer_end_ + kSlopBytes - ptr) {
      s->append(ptr, size);
      return ptr + size;
    }
    return AppendStringFallback(ptr, size, s);
  }
  // Implemented in arenastring.cc
  PROTOBUF_NODISCARD const char* ReadArenaString(const char* ptr,
                                                 ArenaStringPtr* s,
                                                 Arena* arena);

  template <typename Tag, typename T>
  PROTOBUF_NODISCARD const char* ReadRepeatedFixed(const char* ptr,
                                                   Tag expected_tag,
                                                   RepeatedField<T>* out);

  template <typename T>
  PROTOBUF_NODISCARD const char* ReadPackedFixed(const char* ptr, int size,
                                                 RepeatedField<T>* out);
  template <typename Add>
  PROTOBUF_NODISCARD const char* ReadPackedVarint(const char* ptr, Add add);

  uint32_t LastTag() const { return last_tag_minus_1_ + 1; }
  bool ConsumeEndGroup(uint32_t start_tag) {
    bool res = last_tag_minus_1_ == start_tag;
    last_tag_minus_1_ = 0;
    return res;
  }
  bool EndedAtLimit() const { return last_tag_minus_1_ == 0; }
  bool EndedAtEndOfStream() const { return last_tag_minus_1_ == 1; }
  void SetLastTag(uint32_t tag) { last_tag_minus_1_ = tag - 1; }
  void SetEndOfStream() { last_tag_minus_1_ = 1; }
  bool IsExceedingLimit(const char* ptr) {
    return ptr > limit_end_ &&
           (next_chunk_ == nullptr || ptr - buffer_end_ > limit_);
  }
  bool AliasingEnabled() const { return aliasing_ != kNoAliasing; }
  int BytesUntilLimit(const char* ptr) const {
    return limit_ + static_cast<int>(buffer_end_ - ptr);
  }
  // Returns true if more data is available, if false is returned one has to
  // call Done for further checks.
  bool DataAvailable(const char* ptr) { return ptr < limit_end_; }

 protected:
  // Returns true is limit (either an explicit limit or end of stream) is
  // reached. It aligns *ptr across buffer seams.
  // If limit is exceeded it returns true and ptr is set to null.
  bool DoneWithCheck(const char** ptr, int d) {
    GOOGLE_DCHECK(*ptr);
    if (PROTOBUF_PREDICT_TRUE(*ptr < limit_end_)) return false;
    int overrun = static_cast<int>(*ptr - buffer_end_);
    GOOGLE_DCHECK_LE(overrun, kSlopBytes);  // Guaranteed by parse loop.
    if (overrun ==
        limit_) {  //  No need to flip buffers if we ended on a limit.
      // If we actually overrun the buffer and next_chunk_ is null. It means
      // the stream ended and we passed the stream end.
      if (overrun > 0 && next_chunk_ == nullptr) *ptr = nullptr;
      return true;
    }
    auto res = DoneFallback(overrun, d);
    *ptr = res.first;
    return res.second;
  }

  const char* InitFrom(StringPiece flat) {
    overall_limit_ = 0;
    if (flat.size() > kSlopBytes) {
      limit_ = kSlopBytes;
      limit_end_ = buffer_end_ = flat.data() + flat.size() - kSlopBytes;
      next_chunk_ = buffer_;
      if (aliasing_ == kOnPatch) aliasing_ = kNoDelta;
      return flat.data();
    } else {
      std::memcpy(buffer_, flat.data(), flat.size());
      limit_ = 0;
      limit_end_ = buffer_end_ = buffer_ + flat.size();
      next_chunk_ = nullptr;
      if (aliasing_ == kOnPatch) {
        aliasing_ = reinterpret_cast<std::uintptr_t>(flat.data()) -
                    reinterpret_cast<std::uintptr_t>(buffer_);
      }
      return buffer_;
    }
  }

  const char* InitFrom(io::ZeroCopyInputStream* zcis);

  const char* InitFrom(io::ZeroCopyInputStream* zcis, int limit) {
    if (limit == -1) return InitFrom(zcis);
    overall_limit_ = limit;
    auto res = InitFrom(zcis);
    limit_ = limit - static_cast<int>(buffer_end_ - res);
    limit_end_ = buffer_end_ + (std::min)(0, limit_);
    return res;
  }

 private:
  const char* limit_end_;  // buffer_end_ + min(limit_, 0)
  const char* buffer_end_;
  const char* next_chunk_;
  int size_;
  int limit_;  // relative to buffer_end_;
  io::ZeroCopyInputStream* zcis_ = nullptr;
  char buffer_[2 * kSlopBytes] = {};
  enum { kNoAliasing = 0, kOnPatch = 1, kNoDelta = 2 };
  std::uintptr_t aliasing_ = kNoAliasing;
  // This variable is used to communicate how the parse ended, in order to
  // completely verify the parsed data. A wire-format parse can end because of
  // one of the following conditions:
  // 1) A parse can end on a pushed limit.
  // 2) A parse can end on End Of Stream (EOS).
  // 3) A parse can end on 0 tag (only valid for toplevel message).
  // 4) A parse can end on an end-group tag.
  // This variable should always be set to 0, which indicates case 1. If the
  // parse terminated due to EOS (case 2), it's set to 1. In case the parse
  // ended due to a terminating tag (case 3 and 4) it's set to (tag - 1).
  // This var doesn't really belong in EpsCopyInputStream and should be part of
  // the ParseContext, but case 2 is most easily and optimally implemented in
  // DoneFallback.
  uint32_t last_tag_minus_1_ = 0;
  int overall_limit_ = INT_MAX;  // Overall limit independent of pushed limits.
  // Pretty random large number that seems like a safe allocation on most
  // systems. TODO(gerbens) do we need to set this as build flag?
  enum { kSafeStringSize = 50000000 };

  // Advances to next buffer chunk returns a pointer to the same logical place
  // in the stream as set by overrun. Overrun indicates the position in the slop
  // region the parse was left (0 <= overrun <= kSlopBytes). Returns true if at
  // limit, at which point the returned pointer maybe null if there was an
  // error. The invariant of this function is that it's guaranteed that
  // kSlopBytes bytes can be accessed from the returned ptr. This function might
  // advance more buffers than one in the underlying ZeroCopyInputStream.
  std::pair<const char*, bool> DoneFallback(int overrun, int depth);
  // Advances to the next buffer, at most one call to Next() on the underlying
  // ZeroCopyInputStream is made. This function DOES NOT match the returned
  // pointer to where in the slop region the parse ends, hence no overrun
  // parameter. This is useful for string operations where you always copy
  // to the end of the buffer (including the slop region).
  const char* Next();
  // overrun is the location in the slop region the stream currently is
  // (0 <= overrun <= kSlopBytes). To prevent flipping to the next buffer of
  // the ZeroCopyInputStream in the case the parse will end in the last
  // kSlopBytes of the current buffer. depth is the current depth of nested
  // groups (or negative if the use case does not need careful tracking).
  inline const char* NextBuffer(int overrun, int depth);
  const char* SkipFallback(const char* ptr, int size);
  const char* AppendStringFallback(const char* ptr, int size, std::string* str);
  const char* ReadStringFallback(const char* ptr, int size, std::string* str);
  bool StreamNext(const void** data) {
    bool res = zcis_->Next(data, &size_);
    if (res) overall_limit_ -= size_;
    return res;
  }
  void StreamBackUp(int count) {
    zcis_->BackUp(count);
    overall_limit_ += count;
  }

  template <typename A>
  const char* AppendSize(const char* ptr, int size, const A& append) {
    int chunk_size = buffer_end_ + kSlopBytes - ptr;
    do {
      GOOGLE_DCHECK(size > chunk_size);
      if (next_chunk_ == nullptr) return nullptr;
      append(ptr, chunk_size);
      ptr += chunk_size;
      size -= chunk_size;
      // TODO(gerbens) Next calls NextBuffer which generates buffers with
      // overlap and thus incurs cost of copying the slop regions. This is not
      // necessary for reading strings. We should just call Next buffers.
      if (limit_ <= kSlopBytes) return nullptr;
      ptr = Next();
      if (ptr == nullptr) return nullptr;  // passed the limit
      ptr += kSlopBytes;
      chunk_size = buffer_end_ + kSlopBytes - ptr;
    } while (size > chunk_size);
    append(ptr, size);
    return ptr + size;
  }

  // AppendUntilEnd appends data until a limit (either a PushLimit or end of
  // stream. Normal payloads are from length delimited fields which have an
  // explicit size. Reading until limit only comes when the string takes
  // the place of a protobuf, ie RawMessage/StringRawMessage, lazy fields and
  // implicit weak messages. We keep these methods private and friend them.
  template <typename A>
  const char* AppendUntilEnd(const char* ptr, const A& append) {
    if (ptr - buffer_end_ > limit_) return nullptr;
    while (limit_ > kSlopBytes) {
      size_t chunk_size = buffer_end_ + kSlopBytes - ptr;
      append(ptr, chunk_size);
      ptr = Next();
      if (ptr == nullptr) return limit_end_;
      ptr += kSlopBytes;
    }
    auto end = buffer_end_ + limit_;
    GOOGLE_DCHECK(end >= ptr);
    append(ptr, end - ptr);
    return end;
  }

  PROTOBUF_NODISCARD const char* AppendString(const char* ptr,
                                              std::string* str) {
    return AppendUntilEnd(
        ptr, [str](const char* p, ptrdiff_t s) { str->append(p, s); });
  }
  friend class ImplicitWeakMessage;
};

using LazyEagerVerifyFnType = const char* (*)(const char* ptr,
                                              ParseContext* ctx);
using LazyEagerVerifyFnRef = std::remove_pointer<LazyEagerVerifyFnType>::type&;

// ParseContext holds all data that is global to the entire parse. Most
// importantly it contains the input stream, but also recursion depth and also
// stores the end group tag, in case a parser ended on a endgroup, to verify
// matching start/end group tags.
class PROTOBUF_EXPORT ParseContext : public EpsCopyInputStream {
 public:
  struct Data {
    const DescriptorPool* pool = nullptr;
    MessageFactory* factory = nullptr;
    Arena* arena = nullptr;
  };

  template <typename... T>
  ParseContext(int depth, bool aliasing, const char** start, T&&... args)
      : EpsCopyInputStream(aliasing), depth_(depth) {
    *start = InitFrom(std::forward<T>(args)...);
  }

  void TrackCorrectEnding() { group_depth_ = 0; }

  bool Done(const char** ptr) { return DoneWithCheck(ptr, group_depth_); }

  int depth() const { return depth_; }

  Data& data() { return data_; }
  const Data& data() const { return data_; }

  const char* ParseMessage(MessageLite* msg, const char* ptr);

  // Spawns a child parsing context that inherits key properties. New context
  // inherits the following:
  // --depth_, data_, check_required_fields_, lazy_parse_mode_
  // The spawned context always disables aliasing (different input).
  template <typename... T>
  ParseContext Spawn(const char** start, T&&... args) {
    ParseContext spawned(depth_, false, start, std::forward<T>(args)...);
    // Transfer key context states.
    spawned.data_ = data_;
    return spawned;
  }

  // This overload supports those few cases where ParseMessage is called
  // on a class that is not actually a proto message.
  // TODO(jorg): Eliminate this use case.
  template <typename T,
            typename std::enable_if<!std::is_base_of<MessageLite, T>::value,
                                    bool>::type = true>
  PROTOBUF_NODISCARD const char* ParseMessage(T* msg, const char* ptr);

  template <typename T>
  PROTOBUF_NODISCARD PROTOBUF_NDEBUG_INLINE const char* ParseGroup(
      T* msg, const char* ptr, uint32_t tag) {
    if (--depth_ < 0) return nullptr;
    group_depth_++;
    ptr = msg->_InternalParse(ptr, this);
    group_depth_--;
    depth_++;
    if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(tag))) return nullptr;
    return ptr;
  }

 private:
  // Out-of-line routine to save space in ParseContext::ParseMessage<T>
  //   int old;
  //   ptr = ReadSizeAndPushLimitAndDepth(ptr, &old)
  // is equivalent to:
  //   int size = ReadSize(&ptr);
  //   if (!ptr) return nullptr;
  //   int old = PushLimit(ptr, size);
  //   if (--depth_ < 0) return nullptr;
  PROTOBUF_NODISCARD const char* ReadSizeAndPushLimitAndDepth(const char* ptr,
                                                              int* old_limit);

  // The context keeps an internal stack to keep track of the recursive
  // part of the parse state.
  // Current depth of the active parser, depth counts down.
  // This is used to limit recursion depth (to prevent overflow on malicious
  // data), but is also used to index in stack_ to store the current state.
  int depth_;
  // Unfortunately necessary for the fringe case of ending on 0 or end-group tag
  // in the last kSlopBytes of a ZeroCopyInputStream chunk.
  int group_depth_ = INT_MIN;
  Data data_;
};

template <uint32_t tag>
bool ExpectTag(const char* ptr) {
  if (tag < 128) {
    return *ptr == static_cast<char>(tag);
  } else {
    static_assert(tag < 128 * 128, "We only expect tags for 1 or 2 bytes");
    char buf[2] = {static_cast<char>(tag | 0x80), static_cast<char>(tag >> 7)};
    return std::memcmp(ptr, buf, 2) == 0;
  }
}

template <int>
struct EndianHelper;

template <>
struct EndianHelper<1> {
  static uint8_t Load(const void* p) { return *static_cast<const uint8_t*>(p); }
};

template <>
struct EndianHelper<2> {
  static uint16_t Load(const void* p) {
    uint16_t tmp;
    std::memcpy(&tmp, p, 2);
    return little_endian::ToHost(tmp);
  }
};

template <>
struct EndianHelper<4> {
  static uint32_t Load(const void* p) {
    uint32_t tmp;
    std::memcpy(&tmp, p, 4);
    return little_endian::ToHost(tmp);
  }
};

template <>
struct EndianHelper<8> {
  static uint64_t Load(const void* p) {
    uint64_t tmp;
    std::memcpy(&tmp, p, 8);
    return little_endian::ToHost(tmp);
  }
};

template <typename T>
T UnalignedLoad(const char* p) {
  auto tmp = EndianHelper<sizeof(T)>::Load(p);
  T res;
  memcpy(&res, &tmp, sizeof(T));
  return res;
}

PROTOBUF_EXPORT
std::pair<const char*, uint32_t> VarintParseSlow32(const char* p, uint32_t res);
PROTOBUF_EXPORT
std::pair<const char*, uint64_t> VarintParseSlow64(const char* p, uint32_t res);

inline const char* VarintParseSlow(const char* p, uint32_t res, uint32_t* out) {
  auto tmp = VarintParseSlow32(p, res);
  *out = tmp.second;
  return tmp.first;
}

inline const char* VarintParseSlow(const char* p, uint32_t res, uint64_t* out) {
  auto tmp = VarintParseSlow64(p, res);
  *out = tmp.second;
  return tmp.first;
}

template <typename T>
PROTOBUF_NODISCARD const char* VarintParse(const char* p, T* out) {
  auto ptr = reinterpret_cast<const uint8_t*>(p);
  uint32_t res = ptr[0];
  if (!(res & 0x80)) {
    *out = res;
    return p + 1;
  }
  uint32_t byte = ptr[1];
  res += (byte - 1) << 7;
  if (!(byte & 0x80)) {
    *out = res;
    return p + 2;
  }
  return VarintParseSlow(p, res, out);
}

// Used for tags, could read up to 5 bytes which must be available.
// Caller must ensure its safe to call.

PROTOBUF_EXPORT
std::pair<const char*, uint32_t> ReadTagFallback(const char* p, uint32_t res);

// Same as ParseVarint but only accept 5 bytes at most.
inline const char* ReadTag(const char* p, uint32_t* out,
                           uint32_t /*max_tag*/ = 0) {
  uint32_t res = static_cast<uint8_t>(p[0]);
  if (res < 128) {
    *out = res;
    return p + 1;
  }
  uint32_t second = static_cast<uint8_t>(p[1]);
  res += (second - 1) << 7;
  if (second < 128) {
    *out = res;
    return p + 2;
  }
  auto tmp = ReadTagFallback(p, res);
  *out = tmp.second;
  return tmp.first;
}

// As above, but optimized to consume very few registers while still being fast,
// ReadTagInlined is useful for callers that don't mind the extra code but would
// like to avoid an extern function call causing spills into the stack.
//
// Two support routines for ReadTagInlined come first...
template <class T>
PROTOBUF_NODISCARD PROTOBUF_ALWAYS_INLINE constexpr T RotateLeft(
    T x, int s) noexcept {
  return static_cast<T>(x << (s & (std::numeric_limits<T>::digits - 1))) |
         static_cast<T>(x >> ((-s) & (std::numeric_limits<T>::digits - 1)));
}

PROTOBUF_NODISCARD inline PROTOBUF_ALWAYS_INLINE uint64_t
RotRight7AndReplaceLowByte(uint64_t res, const char& byte) {
#if defined(__x86_64__) && defined(__GNUC__)
  // This will only use one register for `res`.
  // `byte` comes as a reference to allow the compiler to generate code like:
  //
  //   rorq    $7, %rcx
  //   movb    1(%rax), %cl
  //
  // which avoids loading the incoming bytes into a separate register first.
  asm("ror $7,%0\n\t"
      "movb %1,%b0"
      : "+r"(res)
      : "m"(byte));
#else
  res = RotateLeft(res, -7);
  res = res & ~0xFF;
  res |= 0xFF & byte;
#endif
  return res;
};

inline PROTOBUF_ALWAYS_INLINE
const char* ReadTagInlined(const char* ptr, uint32_t* out) {
  uint64_t res = 0xFF & ptr[0];
  if (PROTOBUF_PREDICT_FALSE(res >= 128)) {
    res = RotRight7AndReplaceLowByte(res, ptr[1]);
    if (PROTOBUF_PREDICT_FALSE(res & 0x80)) {
      res = RotRight7AndReplaceLowByte(res, ptr[2]);
      if (PROTOBUF_PREDICT_FALSE(res & 0x80)) {
        res = RotRight7AndReplaceLowByte(res, ptr[3]);
        if (PROTOBUF_PREDICT_FALSE(res & 0x80)) {
          // Note: this wouldn't work if res were 32-bit,
          // because then replacing the low byte would overwrite
          // the bottom 4 bits of the result.
          res = RotRight7AndReplaceLowByte(res, ptr[4]);
          if (PROTOBUF_PREDICT_FALSE(res & 0x80)) {
            // The proto format does not permit longer than 5-byte encodings for
            // tags.
            *out = 0;
            return nullptr;
          }
          *out = static_cast<uint32_t>(RotateLeft(res, 28));
#if defined(__GNUC__)
          // Note: this asm statement prevents the compiler from
          // trying to share the "return ptr + constant" among all
          // branches.
          asm("" : "+r"(ptr));
#endif
          return ptr + 5;
        }
        *out = static_cast<uint32_t>(RotateLeft(res, 21));
        return ptr + 4;
      }
      *out = static_cast<uint32_t>(RotateLeft(res, 14));
      return ptr + 3;
    }
    *out = static_cast<uint32_t>(RotateLeft(res, 7));
    return ptr + 2;
  }
  *out = static_cast<uint32_t>(res);
  return ptr + 1;
}

// Decode 2 consecutive bytes of a varint and returns the value, shifted left
// by 1. It simultaneous updates *ptr to *ptr + 1 or *ptr + 2 depending if the
// first byte's continuation bit is set.
// If bit 15 of return value is set (equivalent to the continuation bits of both
// bytes being set) the varint continues, otherwise the parse is done. On x86
// movsx eax, dil
// and edi, eax
// add eax, edi
// adc [rsi], 1
inline uint32_t DecodeTwoBytes(const char** ptr) {
  uint32_t value = UnalignedLoad<uint16_t>(*ptr);
  // Sign extend the low byte continuation bit
  uint32_t x = static_cast<int8_t>(value);
  value &= x;  // Mask out the high byte iff no continuation
  // This add is an amazing operation, it cancels the low byte continuation bit
  // from y transferring it to the carry. Simultaneously it also shifts the 7
  // LSB left by one tightly against high byte varint bits. Hence value now
  // contains the unpacked value shifted left by 1.
  value += x;
  // Use the carry to update the ptr appropriately.
  *ptr += value < x ? 2 : 1;
  return value;
}

// More efficient varint parsing for big varints
inline const char* ParseBigVarint(const char* p, uint64_t* out) {
  auto pnew = p;
  auto tmp = DecodeTwoBytes(&pnew);
  uint64_t res = tmp >> 1;
  if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) {
    *out = res;
    return pnew;
  }
  for (std::uint32_t i = 1; i < 5; i++) {
    pnew = p + 2 * i;
    tmp = DecodeTwoBytes(&pnew);
    res += (static_cast<std::uint64_t>(tmp) - 2) << (14 * i - 1);
    if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) {
      *out = res;
      return pnew;
    }
  }
  return nullptr;
}

PROTOBUF_EXPORT
std::pair<const char*, int32_t> ReadSizeFallback(const char* p, uint32_t first);
// Used for tags, could read up to 5 bytes which must be available. Additionally
// it makes sure the unsigned value fits a int32_t, otherwise returns nullptr.
// Caller must ensure its safe to call.
inline uint32_t ReadSize(const char** pp) {
  auto p = *pp;
  uint32_t res = static_cast<uint8_t>(p[0]);
  if (res < 128) {
    *pp = p + 1;
    return res;
  }
  auto x = ReadSizeFallback(p, res);
  *pp = x.first;
  return x.second;
}

// Some convenience functions to simplify the generated parse loop code.
// Returning the value and updating the buffer pointer allows for nicer
// function composition. We rely on the compiler to inline this.
// Also in debug compiles having local scoped variables tend to generated
// stack frames that scale as O(num fields).
inline uint64_t ReadVarint64(const char** p) {
  uint64_t tmp;
  *p = VarintParse(*p, &tmp);
  return tmp;
}

inline uint32_t ReadVarint32(const char** p) {
  uint32_t tmp;
  *p = VarintParse(*p, &tmp);
  return tmp;
}

inline int64_t ReadVarintZigZag64(const char** p) {
  uint64_t tmp;
  *p = VarintParse(*p, &tmp);
  return WireFormatLite::ZigZagDecode64(tmp);
}

inline int32_t ReadVarintZigZag32(const char** p) {
  uint64_t tmp;
  *p = VarintParse(*p, &tmp);
  return WireFormatLite::ZigZagDecode32(static_cast<uint32_t>(tmp));
}

template <typename T, typename std::enable_if<
                          !std::is_base_of<MessageLite, T>::value, bool>::type>
PROTOBUF_NODISCARD const char* ParseContext::ParseMessage(T* msg,
                                                          const char* ptr) {
  int old;
  ptr = ReadSizeAndPushLimitAndDepth(ptr, &old);
  ptr = ptr ? msg->_InternalParse(ptr, this) : nullptr;
  depth_++;
  if (!PopLimit(old)) return nullptr;
  return ptr;
}

template <typename Tag, typename T>
const char* EpsCopyInputStream::ReadRepeatedFixed(const char* ptr,
                                                  Tag expected_tag,
                                                  RepeatedField<T>* out) {
  do {
    out->Add(UnalignedLoad<T>(ptr));
    ptr += sizeof(T);
    if (PROTOBUF_PREDICT_FALSE(ptr >= limit_end_)) return ptr;
  } while (UnalignedLoad<Tag>(ptr) == expected_tag && (ptr += sizeof(Tag)));
  return ptr;
}

// Add any of the following lines to debug which parse function is failing.

#define GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, ret) \
  if (!(predicate)) {                                  \
    /*  ::raise(SIGINT);  */                           \
    /*  GOOGLE_LOG(ERROR) << "Parse failure";  */             \
    return ret;                                        \
  }

#define GOOGLE_PROTOBUF_PARSER_ASSERT(predicate) \
  GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, nullptr)

template <typename T>
const char* EpsCopyInputStream::ReadPackedFixed(const char* ptr, int size,
                                                RepeatedField<T>* out) {
  GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
  int nbytes = buffer_end_ + kSlopBytes - ptr;
  while (size > nbytes) {
    int num = nbytes / sizeof(T);
    int old_entries = out->size();
    out->Reserve(old_entries + num);
    int block_size = num * sizeof(T);
    auto dst = out->AddNAlreadyReserved(num);
#ifdef PROTOBUF_LITTLE_ENDIAN
    std::memcpy(dst, ptr, block_size);
#else
    for (int i = 0; i < num; i++)
      dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T));
#endif
    size -= block_size;
    if (limit_ <= kSlopBytes) return nullptr;
    ptr = Next();
    if (ptr == nullptr) return nullptr;
    ptr += kSlopBytes - (nbytes - block_size);
    nbytes = buffer_end_ + kSlopBytes - ptr;
  }
  int num = size / sizeof(T);
  int old_entries = out->size();
  out->Reserve(old_entries + num);
  int block_size = num * sizeof(T);
  auto dst = out->AddNAlreadyReserved(num);
#ifdef PROTOBUF_LITTLE_ENDIAN
  std::memcpy(dst, ptr, block_size);
#else
  for (int i = 0; i < num; i++) dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T));
#endif
  ptr += block_size;
  if (size != block_size) return nullptr;
  return ptr;
}

template <typename Add>
const char* ReadPackedVarintArray(const char* ptr, const char* end, Add add) {
  while (ptr < end) {
    uint64_t varint;
    ptr = VarintParse(ptr, &varint);
    if (ptr == nullptr) return nullptr;
    add(varint);
  }
  return ptr;
}

template <typename Add>
const char* EpsCopyInputStream::ReadPackedVarint(const char* ptr, Add add) {
  int size = ReadSize(&ptr);
  GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
  int chunk_size = buffer_end_ - ptr;
  while (size > chunk_size) {
    ptr = ReadPackedVarintArray(ptr, buffer_end_, add);
    if (ptr == nullptr) return nullptr;
    int overrun = ptr - buffer_end_;
    GOOGLE_DCHECK(overrun >= 0 && overrun <= kSlopBytes);
    if (size - chunk_size <= kSlopBytes) {
      // The current buffer contains all the information needed, we don't need
      // to flip buffers. However we must parse from a buffer with enough space
      // so we are not prone to a buffer overflow.
      char buf[kSlopBytes + 10] = {};
      std::memcpy(buf, buffer_end_, kSlopBytes);
      GOOGLE_CHECK_LE(size - chunk_size, kSlopBytes);
      auto end = buf + (size - chunk_size);
      auto res = ReadPackedVarintArray(buf + overrun, end, add);
      if (res == nullptr || res != end) return nullptr;
      return buffer_end_ + (res - buf);
    }
    size -= overrun + chunk_size;
    GOOGLE_DCHECK_GT(size, 0);
    // We must flip buffers
    if (limit_ <= kSlopBytes) return nullptr;
    ptr = Next();
    if (ptr == nullptr) return nullptr;
    ptr += overrun;
    chunk_size = buffer_end_ - ptr;
  }
  auto end = ptr + size;
  ptr = ReadPackedVarintArray(ptr, end, add);
  return end == ptr ? ptr : nullptr;
}

// Helper for verification of utf8
PROTOBUF_EXPORT
bool VerifyUTF8(StringPiece s, const char* field_name);

inline bool VerifyUTF8(const std::string* s, const char* field_name) {
  return VerifyUTF8(*s, field_name);
}

// All the string parsers with or without UTF checking and for all CTypes.
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* InlineGreedyStringParser(
    std::string* s, const char* ptr, ParseContext* ctx);


template <typename T>
PROTOBUF_NODISCARD const char* FieldParser(uint64_t tag, T& field_parser,
                                           const char* ptr, ParseContext* ctx) {
  uint32_t number = tag >> 3;
  GOOGLE_PROTOBUF_PARSER_ASSERT(number != 0);
  using WireType = internal::WireFormatLite::WireType;
  switch (tag & 7) {
    case WireType::WIRETYPE_VARINT: {
      uint64_t value;
      ptr = VarintParse(ptr, &value);
      GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
      field_parser.AddVarint(number, value);
      break;
    }
    case WireType::WIRETYPE_FIXED64: {
      uint64_t value = UnalignedLoad<uint64_t>(ptr);
      ptr += 8;
      field_parser.AddFixed64(number, value);
      break;
    }
    case WireType::WIRETYPE_LENGTH_DELIMITED: {
      ptr = field_parser.ParseLengthDelimited(number, ptr, ctx);
      GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
      break;
    }
    case WireType::WIRETYPE_START_GROUP: {
      ptr = field_parser.ParseGroup(number, ptr, ctx);
      GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
      break;
    }
    case WireType::WIRETYPE_END_GROUP: {
      GOOGLE_LOG(FATAL) << "Can't happen";
      break;
    }
    case WireType::WIRETYPE_FIXED32: {
      uint32_t value = UnalignedLoad<uint32_t>(ptr);
      ptr += 4;
      field_parser.AddFixed32(number, value);
      break;
    }
    default:
      return nullptr;
  }
  return ptr;
}

template <typename T>
PROTOBUF_NODISCARD const char* WireFormatParser(T& field_parser,
                                                const char* ptr,
                                                ParseContext* ctx) {
  while (!ctx->Done(&ptr)) {
    uint32_t tag;
    ptr = ReadTag(ptr, &tag);
    GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr);
    if (tag == 0 || (tag & 7) == 4) {
      ctx->SetLastTag(tag);
      return ptr;
    }
    ptr = FieldParser(tag, field_parser, ptr, ctx);
    GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr);
  }
  return ptr;
}

// The packed parsers parse repeated numeric primitives directly into  the
// corresponding field

// These are packed varints
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedInt32Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedUInt32Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedInt64Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedUInt64Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSInt32Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSInt64Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedEnumParser(
    void* object, const char* ptr, ParseContext* ctx);

template <typename T>
PROTOBUF_NODISCARD const char* PackedEnumParser(void* object, const char* ptr,
                                                ParseContext* ctx,
                                                bool (*is_valid)(int),
                                                InternalMetadata* metadata,
                                                int field_num) {
  return ctx->ReadPackedVarint(
      ptr, [object, is_valid, metadata, field_num](uint64_t val) {
        if (is_valid(val)) {
          static_cast<RepeatedField<int>*>(object)->Add(val);
        } else {
          WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>());
        }
      });
}

template <typename T>
PROTOBUF_NODISCARD const char* PackedEnumParserArg(
    void* object, const char* ptr, ParseContext* ctx,
    bool (*is_valid)(const void*, int), const void* data,
    InternalMetadata* metadata, int field_num) {
  return ctx->ReadPackedVarint(
      ptr, [object, is_valid, data, metadata, field_num](uint64_t val) {
        if (is_valid(data, val)) {
          static_cast<RepeatedField<int>*>(object)->Add(val);
        } else {
          WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>());
        }
      });
}

PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedBoolParser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFixed32Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSFixed32Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFixed64Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSFixed64Parser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFloatParser(
    void* object, const char* ptr, ParseContext* ctx);
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedDoubleParser(
    void* object, const char* ptr, ParseContext* ctx);

// This is the only recursive parser.
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* UnknownGroupLiteParse(
    std::string* unknown, const char* ptr, ParseContext* ctx);
// This is a helper to for the UnknownGroupLiteParse but is actually also
// useful in the generated code. It uses overload on std::string* vs
// UnknownFieldSet* to make the generated code isomorphic between full and lite.
PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* UnknownFieldParse(
    uint32_t tag, std::string* unknown, const char* ptr, ParseContext* ctx);

}  // namespace internal
}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_PARSE_CONTEXT_H__