arena_impl.h 24.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// This file defines an Arena allocator for better allocation performance.

#ifndef GOOGLE_PROTOBUF_ARENA_IMPL_H__
#define GOOGLE_PROTOBUF_ARENA_IMPL_H__

#include <atomic>
#include <limits>
#include <typeinfo>

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/port.h>

#ifdef ADDRESS_SANITIZER
#include <sanitizer/asan_interface.h>
#endif  // ADDRESS_SANITIZER

#include <google/protobuf/arenaz_sampler.h>

// Must be included last.
#include <google/protobuf/port_def.inc>


namespace google {
namespace protobuf {
namespace internal {

// To prevent sharing cache lines between threads
#ifdef __cpp_aligned_new
enum { kCacheAlignment = 64 };
#else
enum { kCacheAlignment = alignof(max_align_t) };  // do the best we can
#endif

inline constexpr size_t AlignUpTo8(size_t n) {
  // Align n to next multiple of 8 (from Hacker's Delight, Chapter 3.)
  return (n + 7) & static_cast<size_t>(-8);
}

using LifecycleIdAtomic = uint64_t;

// MetricsCollector collects stats for a particular arena.
class PROTOBUF_EXPORT ArenaMetricsCollector {
 public:
  ArenaMetricsCollector(bool record_allocs) : record_allocs_(record_allocs) {}

  // Invoked when the arena is about to be destroyed. This method will
  // typically finalize any metric collection and delete the collector.
  // space_allocated is the space used by the arena.
  virtual void OnDestroy(uint64_t space_allocated) = 0;

  // OnReset() is called when the associated arena is reset.
  // space_allocated is the space used by the arena just before the reset.
  virtual void OnReset(uint64_t space_allocated) = 0;

  // OnAlloc is called when an allocation happens.
  // type_info is promised to be static - its lifetime extends to
  // match program's lifetime (It is given by typeid operator).
  // Note: typeid(void) will be passed as allocated_type every time we
  // intentionally want to avoid monitoring an allocation. (i.e. internal
  // allocations for managing the arena)
  virtual void OnAlloc(const std::type_info* allocated_type,
                       uint64_t alloc_size) = 0;

  // Does OnAlloc() need to be called?  If false, metric collection overhead
  // will be reduced since we will not do extra work per allocation.
  bool RecordAllocs() { return record_allocs_; }

 protected:
  // This class is destructed by the call to OnDestroy().
  ~ArenaMetricsCollector() = default;
  const bool record_allocs_;
};

struct AllocationPolicy {
  static constexpr size_t kDefaultStartBlockSize = 256;
  static constexpr size_t kDefaultMaxBlockSize = 8192;

  size_t start_block_size = kDefaultStartBlockSize;
  size_t max_block_size = kDefaultMaxBlockSize;
  void* (*block_alloc)(size_t) = nullptr;
  void (*block_dealloc)(void*, size_t) = nullptr;
  ArenaMetricsCollector* metrics_collector = nullptr;

  bool IsDefault() const {
    return start_block_size == kDefaultMaxBlockSize &&
           max_block_size == kDefaultMaxBlockSize && block_alloc == nullptr &&
           block_dealloc == nullptr && metrics_collector == nullptr;
  }
};

// Tagged pointer to an AllocationPolicy.
class TaggedAllocationPolicyPtr {
 public:
  constexpr TaggedAllocationPolicyPtr() : policy_(0) {}

  explicit TaggedAllocationPolicyPtr(AllocationPolicy* policy)
      : policy_(reinterpret_cast<uintptr_t>(policy)) {}

  void set_policy(AllocationPolicy* policy) {
    auto bits = policy_ & kTagsMask;
    policy_ = reinterpret_cast<uintptr_t>(policy) | bits;
  }

  AllocationPolicy* get() {
    return reinterpret_cast<AllocationPolicy*>(policy_ & kPtrMask);
  }
  const AllocationPolicy* get() const {
    return reinterpret_cast<const AllocationPolicy*>(policy_ & kPtrMask);
  }

  AllocationPolicy& operator*() { return *get(); }
  const AllocationPolicy& operator*() const { return *get(); }

  AllocationPolicy* operator->() { return get(); }
  const AllocationPolicy* operator->() const { return get(); }

  bool is_user_owned_initial_block() const {
    return static_cast<bool>(get_mask<kUserOwnedInitialBlock>());
  }
  void set_is_user_owned_initial_block(bool v) {
    set_mask<kUserOwnedInitialBlock>(v);
  }

  bool should_record_allocs() const {
    return static_cast<bool>(get_mask<kRecordAllocs>());
  }
  void set_should_record_allocs(bool v) { set_mask<kRecordAllocs>(v); }

  uintptr_t get_raw() const { return policy_; }

  inline void RecordAlloc(const std::type_info* allocated_type,
                          size_t n) const {
    get()->metrics_collector->OnAlloc(allocated_type, n);
  }

 private:
  enum : uintptr_t {
    kUserOwnedInitialBlock = 1,
    kRecordAllocs = 2,
  };

  static constexpr uintptr_t kTagsMask = 7;
  static constexpr uintptr_t kPtrMask = ~kTagsMask;

  template <uintptr_t kMask>
  uintptr_t get_mask() const {
    return policy_ & kMask;
  }
  template <uintptr_t kMask>
  void set_mask(bool v) {
    if (v) {
      policy_ |= kMask;
    } else {
      policy_ &= ~kMask;
    }
  }
  uintptr_t policy_;
};

enum class AllocationClient { kDefault, kArray };

// A simple arena allocator. Calls to allocate functions must be properly
// serialized by the caller, hence this class cannot be used as a general
// purpose allocator in a multi-threaded program. It serves as a building block
// for ThreadSafeArena, which provides a thread-safe arena allocator.
//
// This class manages
// 1) Arena bump allocation + owning memory blocks.
// 2) Maintaining a cleanup list.
// It delagetes the actual memory allocation back to ThreadSafeArena, which
// contains the information on block growth policy and backing memory allocation
// used.
class PROTOBUF_EXPORT SerialArena {
 public:
  struct Memory {
    void* ptr;
    size_t size;
  };

  // Node contains the ptr of the object to be cleaned up and the associated
  // cleanup function ptr.
  struct CleanupNode {
    void* elem;              // Pointer to the object to be cleaned up.
    void (*cleanup)(void*);  // Function pointer to the destructor or deleter.
  };

  void CleanupList();
  uint64_t SpaceAllocated() const {
    return space_allocated_.load(std::memory_order_relaxed);
  }
  uint64_t SpaceUsed() const;

  bool HasSpace(size_t n) const {
    return n <= static_cast<size_t>(limit_ - ptr_);
  }

  // See comments on `cached_blocks_` member for details.
  PROTOBUF_ALWAYS_INLINE void* TryAllocateFromCachedBlock(size_t size) {
    if (PROTOBUF_PREDICT_FALSE(size < 16)) return nullptr;
    // We round up to the next larger block in case the memory doesn't match
    // the pattern we are looking for.
    const size_t index = Bits::Log2FloorNonZero64(size - 1) - 3;

    if (index >= cached_block_length_) return nullptr;
    auto& cached_head = cached_blocks_[index];
    if (cached_head == nullptr) return nullptr;

    void* ret = cached_head;
#ifdef ADDRESS_SANITIZER
    ASAN_UNPOISON_MEMORY_REGION(ret, size);
#endif  // ADDRESS_SANITIZER
    cached_head = cached_head->next;
    return ret;
  }

  // In kArray mode we look through cached blocks.
  // We do not do this by default because most non-array allocations will not
  // have the right size and will fail to find an appropriate cached block.
  //
  // TODO(sbenza): Evaluate if we should use cached blocks for message types of
  // the right size. We can statically know if the allocation size can benefit
  // from it.
  template <AllocationClient alloc_client = AllocationClient::kDefault>
  void* AllocateAligned(size_t n, const AllocationPolicy* policy) {
    GOOGLE_DCHECK_EQ(internal::AlignUpTo8(n), n);  // Must be already aligned.
    GOOGLE_DCHECK_GE(limit_, ptr_);

    if (alloc_client == AllocationClient::kArray) {
      if (void* res = TryAllocateFromCachedBlock(n)) {
        return res;
      }
    }

    if (PROTOBUF_PREDICT_FALSE(!HasSpace(n))) {
      return AllocateAlignedFallback(n, policy);
    }
    return AllocateFromExisting(n);
  }

 private:
  void* AllocateFromExisting(size_t n) {
    void* ret = ptr_;
    ptr_ += n;
#ifdef ADDRESS_SANITIZER
    ASAN_UNPOISON_MEMORY_REGION(ret, n);
#endif  // ADDRESS_SANITIZER
    return ret;
  }

  // See comments on `cached_blocks_` member for details.
  void ReturnArrayMemory(void* p, size_t size) {
    // We only need to check for 32-bit platforms.
    // In 64-bit platforms the minimum allocation size from Repeated*Field will
    // be 16 guaranteed.
    if (sizeof(void*) < 8) {
      if (PROTOBUF_PREDICT_FALSE(size < 16)) return;
    } else {
      GOOGLE_DCHECK(size >= 16);
    }

    // We round down to the next smaller block in case the memory doesn't match
    // the pattern we are looking for. eg, someone might have called Reserve()
    // on the repeated field.
    const size_t index = Bits::Log2FloorNonZero64(size) - 4;

    if (PROTOBUF_PREDICT_FALSE(index >= cached_block_length_)) {
      // We can't put this object on the freelist so make this object the
      // freelist. It is guaranteed it is larger than the one we have, and
      // large enough to hold another allocation of `size`.
      CachedBlock** new_list = static_cast<CachedBlock**>(p);
      size_t new_size = size / sizeof(CachedBlock*);

      std::copy(cached_blocks_, cached_blocks_ + cached_block_length_,
                new_list);
      std::fill(new_list + cached_block_length_, new_list + new_size, nullptr);
      cached_blocks_ = new_list;
      // Make the size fit in uint8_t. This is the power of two, so we don't
      // need anything larger.
      cached_block_length_ =
          static_cast<uint8_t>(std::min(size_t{64}, new_size));

      return;
    }

    auto& cached_head = cached_blocks_[index];
    auto* new_node = static_cast<CachedBlock*>(p);
    new_node->next = cached_head;
    cached_head = new_node;
#ifdef ADDRESS_SANITIZER
    ASAN_POISON_MEMORY_REGION(p, size);
#endif  // ADDRESS_SANITIZER
  }

 public:
  // Allocate space if the current region provides enough space.
  bool MaybeAllocateAligned(size_t n, void** out) {
    GOOGLE_DCHECK_EQ(internal::AlignUpTo8(n), n);  // Must be already aligned.
    GOOGLE_DCHECK_GE(limit_, ptr_);
    if (PROTOBUF_PREDICT_FALSE(!HasSpace(n))) return false;
    *out = AllocateFromExisting(n);
    return true;
  }

  std::pair<void*, CleanupNode*> AllocateAlignedWithCleanup(
      size_t n, const AllocationPolicy* policy) {
    GOOGLE_DCHECK_EQ(internal::AlignUpTo8(n), n);  // Must be already aligned.
    if (PROTOBUF_PREDICT_FALSE(!HasSpace(n + kCleanupSize))) {
      return AllocateAlignedWithCleanupFallback(n, policy);
    }
    return AllocateFromExistingWithCleanupFallback(n);
  }

 private:
  std::pair<void*, CleanupNode*> AllocateFromExistingWithCleanupFallback(
      size_t n) {
    void* ret = ptr_;
    ptr_ += n;
    limit_ -= kCleanupSize;
#ifdef ADDRESS_SANITIZER
    ASAN_UNPOISON_MEMORY_REGION(ret, n);
    ASAN_UNPOISON_MEMORY_REGION(limit_, kCleanupSize);
#endif  // ADDRESS_SANITIZER
    return CreatePair(ret, reinterpret_cast<CleanupNode*>(limit_));
  }

 public:
  void AddCleanup(void* elem, void (*cleanup)(void*),
                  const AllocationPolicy* policy) {
    auto res = AllocateAlignedWithCleanup(0, policy);
    res.second->elem = elem;
    res.second->cleanup = cleanup;
  }

  void* owner() const { return owner_; }
  SerialArena* next() const { return next_; }
  void set_next(SerialArena* next) { next_ = next; }

 private:
  friend class ThreadSafeArena;
  friend class ArenaBenchmark;

  // Creates a new SerialArena inside mem using the remaining memory as for
  // future allocations.
  static SerialArena* New(SerialArena::Memory mem, void* owner,
                          ThreadSafeArenaStats* stats);
  // Free SerialArena returning the memory passed in to New
  template <typename Deallocator>
  Memory Free(Deallocator deallocator);

  // Blocks are variable length malloc-ed objects.  The following structure
  // describes the common header for all blocks.
  struct Block {
    Block(Block* next, size_t size) : next(next), size(size), start(nullptr) {}

    char* Pointer(size_t n) {
      GOOGLE_DCHECK(n <= size);
      return reinterpret_cast<char*>(this) + n;
    }

    Block* const next;
    const size_t size;
    CleanupNode* start;
    // data follows
  };

  void* owner_;            // &ThreadCache of this thread;
  Block* head_;            // Head of linked list of blocks.
  SerialArena* next_;      // Next SerialArena in this linked list.
  size_t space_used_ = 0;  // Necessary for metrics.
  std::atomic<size_t> space_allocated_;

  // Next pointer to allocate from.  Always 8-byte aligned.  Points inside
  // head_ (and head_->pos will always be non-canonical).  We keep these
  // here to reduce indirection.
  char* ptr_;
  // Limiting address up to which memory can be allocated from the head block.
  char* limit_;
  // For holding sampling information.  The pointer is owned by the
  // ThreadSafeArena that holds this serial arena.
  ThreadSafeArenaStats* arena_stats_;

  // Repeated*Field and Arena play together to reduce memory consumption by
  // reusing blocks. Currently, natural growth of the repeated field types makes
  // them allocate blocks of size `8 + 2^N, N>=3`.
  // When the repeated field grows returns the previous block and we put it in
  // this free list.
  // `cached_blocks_[i]` points to the free list for blocks of size `8+2^(i+3)`.
  // The array of freelists is grown when needed in `ReturnArrayMemory()`.
  struct CachedBlock {
    // Simple linked list.
    CachedBlock* next;
  };
  uint8_t cached_block_length_ = 0;
  CachedBlock** cached_blocks_ = nullptr;

  // Constructor is private as only New() should be used.
  inline SerialArena(Block* b, void* owner, ThreadSafeArenaStats* stats);
  void* AllocateAlignedFallback(size_t n, const AllocationPolicy* policy);
  std::pair<void*, CleanupNode*> AllocateAlignedWithCleanupFallback(
      size_t n, const AllocationPolicy* policy);
  void AllocateNewBlock(size_t n, const AllocationPolicy* policy);

  std::pair<void*, CleanupNode*> CreatePair(void* ptr, CleanupNode* node) {
    return {ptr, node};
  }

 public:
  static constexpr size_t kBlockHeaderSize = AlignUpTo8(sizeof(Block));
  static constexpr size_t kCleanupSize = AlignUpTo8(sizeof(CleanupNode));
};

// Tag type used to invoke the constructor of message-owned arena.
// Only message-owned arenas use this constructor for creation.
// Such constructors are internal implementation details of the library.
struct MessageOwned {
  explicit MessageOwned() = default;
};

// This class provides the core Arena memory allocation library. Different
// implementations only need to implement the public interface below.
// Arena is not a template type as that would only be useful if all protos
// in turn would be templates, which will/cannot happen. However separating
// the memory allocation part from the cruft of the API users expect we can
// use #ifdef the select the best implementation based on hardware / OS.
class PROTOBUF_EXPORT ThreadSafeArena {
 public:
  ThreadSafeArena() { Init(); }

  // Constructor solely used by message-owned arena.
  ThreadSafeArena(internal::MessageOwned) : tag_and_id_(kMessageOwnedArena) {
    Init();
  }

  ThreadSafeArena(char* mem, size_t size) { InitializeFrom(mem, size); }

  explicit ThreadSafeArena(void* mem, size_t size,
                           const AllocationPolicy& policy) {
    InitializeWithPolicy(mem, size, policy);
  }

  // Destructor deletes all owned heap allocated objects, and destructs objects
  // that have non-trivial destructors, except for proto2 message objects whose
  // destructors can be skipped. Also, frees all blocks except the initial block
  // if it was passed in.
  ~ThreadSafeArena();

  uint64_t Reset();

  uint64_t SpaceAllocated() const;
  uint64_t SpaceUsed() const;

  template <AllocationClient alloc_client = AllocationClient::kDefault>
  void* AllocateAligned(size_t n, const std::type_info* type) {
    SerialArena* arena;
    if (PROTOBUF_PREDICT_TRUE(!alloc_policy_.should_record_allocs() &&
                              GetSerialArenaFast(&arena))) {
      return arena->AllocateAligned<alloc_client>(n, AllocPolicy());
    } else {
      return AllocateAlignedFallback(n, type);
    }
  }

  void ReturnArrayMemory(void* p, size_t size) {
    SerialArena* arena;
    if (PROTOBUF_PREDICT_TRUE(GetSerialArenaFast(&arena))) {
      arena->ReturnArrayMemory(p, size);
    }
  }

  // This function allocates n bytes if the common happy case is true and
  // returns true. Otherwise does nothing and returns false. This strange
  // semantics is necessary to allow callers to program functions that only
  // have fallback function calls in tail position. This substantially improves
  // code for the happy path.
  PROTOBUF_NDEBUG_INLINE bool MaybeAllocateAligned(size_t n, void** out) {
    SerialArena* arena;
    if (PROTOBUF_PREDICT_TRUE(!alloc_policy_.should_record_allocs() &&
                              GetSerialArenaFromThreadCache(&arena))) {
      return arena->MaybeAllocateAligned(n, out);
    }
    return false;
  }

  std::pair<void*, SerialArena::CleanupNode*> AllocateAlignedWithCleanup(
      size_t n, const std::type_info* type);

  // Add object pointer and cleanup function pointer to the list.
  void AddCleanup(void* elem, void (*cleanup)(void*));

  // Checks whether this arena is message-owned.
  PROTOBUF_ALWAYS_INLINE bool IsMessageOwned() const {
    return tag_and_id_ & kMessageOwnedArena;
  }

 private:
  // Unique for each arena. Changes on Reset().
  uint64_t tag_and_id_ = 0;
  // The LSB of tag_and_id_ indicates if the arena is message-owned.
  enum : uint64_t { kMessageOwnedArena = 1 };

  TaggedAllocationPolicyPtr alloc_policy_;  // Tagged pointer to AllocPolicy.

  static_assert(std::is_trivially_destructible<SerialArena>{},
                "SerialArena needs to be trivially destructible.");
  // Pointer to a linked list of SerialArena.
  std::atomic<SerialArena*> threads_;
  std::atomic<SerialArena*> hint_;  // Fast thread-local block access

  const AllocationPolicy* AllocPolicy() const { return alloc_policy_.get(); }
  void InitializeFrom(void* mem, size_t size);
  void InitializeWithPolicy(void* mem, size_t size, AllocationPolicy policy);
  void* AllocateAlignedFallback(size_t n, const std::type_info* type);
  std::pair<void*, SerialArena::CleanupNode*>
  AllocateAlignedWithCleanupFallback(size_t n, const std::type_info* type);

  void Init();
  void SetInitialBlock(void* mem, size_t size);

  // Delete or Destruct all objects owned by the arena.
  void CleanupList();

  inline uint64_t LifeCycleId() const {
    return tag_and_id_ & ~kMessageOwnedArena;
  }

  inline void CacheSerialArena(SerialArena* serial) {
    thread_cache().last_serial_arena = serial;
    thread_cache().last_lifecycle_id_seen = tag_and_id_;
    // TODO(haberman): evaluate whether we would gain efficiency by getting rid
    // of hint_.  It's the only write we do to ThreadSafeArena in the allocation
    // path, which will dirty the cache line.

    hint_.store(serial, std::memory_order_release);
  }

  PROTOBUF_NDEBUG_INLINE bool GetSerialArenaFast(SerialArena** arena) {
    if (GetSerialArenaFromThreadCache(arena)) return true;

    // Check whether we own the last accessed SerialArena on this arena.  This
    // fast path optimizes the case where a single thread uses multiple arenas.
    ThreadCache* tc = &thread_cache();
    SerialArena* serial = hint_.load(std::memory_order_acquire);
    if (PROTOBUF_PREDICT_TRUE(serial != nullptr && serial->owner() == tc)) {
      *arena = serial;
      return true;
    }
    return false;
  }

  PROTOBUF_NDEBUG_INLINE bool GetSerialArenaFromThreadCache(
      SerialArena** arena) {
    // If this thread already owns a block in this arena then try to use that.
    // This fast path optimizes the case where multiple threads allocate from
    // the same arena.
    ThreadCache* tc = &thread_cache();
    if (PROTOBUF_PREDICT_TRUE(tc->last_lifecycle_id_seen == tag_and_id_)) {
      *arena = tc->last_serial_arena;
      return true;
    }
    return false;
  }
  SerialArena* GetSerialArenaFallback(void* me);

  template <typename Functor>
  void PerSerialArena(Functor fn) {
    // By omitting an Acquire barrier we ensure that any user code that doesn't
    // properly synchronize Reset() or the destructor will throw a TSAN warning.
    SerialArena* serial = threads_.load(std::memory_order_relaxed);

    for (; serial; serial = serial->next()) fn(serial);
  }

  // Releases all memory except the first block which it returns. The first
  // block might be owned by the user and thus need some extra checks before
  // deleting.
  SerialArena::Memory Free(size_t* space_allocated);

#ifdef _MSC_VER
#pragma warning(disable : 4324)
#endif
  struct alignas(kCacheAlignment) ThreadCache {
#if defined(GOOGLE_PROTOBUF_NO_THREADLOCAL)
    // If we are using the ThreadLocalStorage class to store the ThreadCache,
    // then the ThreadCache's default constructor has to be responsible for
    // initializing it.
    ThreadCache()
        : next_lifecycle_id(0),
          last_lifecycle_id_seen(-1),
          last_serial_arena(nullptr) {}
#endif

    // Number of per-thread lifecycle IDs to reserve. Must be power of two.
    // To reduce contention on a global atomic, each thread reserves a batch of
    // IDs.  The following number is calculated based on a stress test with
    // ~6500 threads all frequently allocating a new arena.
    static constexpr size_t kPerThreadIds = 256;
    // Next lifecycle ID available to this thread. We need to reserve a new
    // batch, if `next_lifecycle_id & (kPerThreadIds - 1) == 0`.
    uint64_t next_lifecycle_id;
    // The ThreadCache is considered valid as long as this matches the
    // lifecycle_id of the arena being used.
    uint64_t last_lifecycle_id_seen;
    SerialArena* last_serial_arena;
  };

  // Lifecycle_id can be highly contended variable in a situation of lots of
  // arena creation. Make sure that other global variables are not sharing the
  // cacheline.
#ifdef _MSC_VER
#pragma warning(disable : 4324)
#endif
  struct alignas(kCacheAlignment) CacheAlignedLifecycleIdGenerator {
    std::atomic<LifecycleIdAtomic> id;
  };
  static CacheAlignedLifecycleIdGenerator lifecycle_id_generator_;
#if defined(GOOGLE_PROTOBUF_NO_THREADLOCAL)
  // iOS does not support __thread keyword so we use a custom thread local
  // storage class we implemented.
  static ThreadCache& thread_cache();
#elif defined(PROTOBUF_USE_DLLS)
  // Thread local variables cannot be exposed through DLL interface but we can
  // wrap them in static functions.
  static ThreadCache& thread_cache();
#else
  static PROTOBUF_THREAD_LOCAL ThreadCache thread_cache_;
  static ThreadCache& thread_cache() { return thread_cache_; }
#endif

  ThreadSafeArenaStatsHandle arena_stats_;

  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ThreadSafeArena);
  // All protos have pointers back to the arena hence Arena must have
  // pointer stability.
  ThreadSafeArena(ThreadSafeArena&&) = delete;
  ThreadSafeArena& operator=(ThreadSafeArena&&) = delete;

 public:
  // kBlockHeaderSize is sizeof(Block), aligned up to the nearest multiple of 8
  // to protect the invariant that pos is always at a multiple of 8.
  static constexpr size_t kBlockHeaderSize = SerialArena::kBlockHeaderSize;
  static constexpr size_t kSerialArenaSize =
      (sizeof(SerialArena) + 7) & static_cast<size_t>(-8);
  static_assert(kBlockHeaderSize % 8 == 0,
                "kBlockHeaderSize must be a multiple of 8.");
  static_assert(kSerialArenaSize % 8 == 0,
                "kSerialArenaSize must be a multiple of 8.");
};

}  // namespace internal
}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_ARENA_IMPL_H__