helpers.h 41.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.

#ifndef GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__
#define GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <map>
#include <string>

#include <google/protobuf/compiler/scc.h>
#include <google/protobuf/compiler/code_generator.h>
#include <google/protobuf/compiler/cpp/names.h>
#include <google/protobuf/compiler/cpp/options.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/io/printer.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/port.h>
#include <google/protobuf/stubs/strutil.h>

// Must be included last.
#include <google/protobuf/port_def.inc>

namespace google {
namespace protobuf {
namespace compiler {
namespace cpp {

enum class ArenaDtorNeeds { kNone = 0, kOnDemand = 1, kRequired = 2 };

inline std::string ProtobufNamespace(const Options& /* options */) {
  return "PROTOBUF_NAMESPACE_ID";
}

inline std::string MacroPrefix(const Options& /* options */) {
  return "GOOGLE_PROTOBUF";
}

inline std::string DeprecatedAttribute(const Options& /* options */,
                                       const FieldDescriptor* d) {
  return d->options().deprecated() ? "PROTOBUF_DEPRECATED " : "";
}

inline std::string DeprecatedAttribute(const Options& /* options */,
                                       const EnumValueDescriptor* d) {
  return d->options().deprecated() ? "PROTOBUF_DEPRECATED_ENUM " : "";
}

// Commonly-used separator comments.  Thick is a line of '=', thin is a line
// of '-'.
extern const char kThickSeparator[];
extern const char kThinSeparator[];

void SetCommonVars(const Options& options,
                   std::map<std::string, std::string>* variables);

// Variables to access message data from the message scope.
void SetCommonMessageDataVariables(
    const Descriptor* descriptor,
    std::map<std::string, std::string>* variables);

void SetUnknownFieldsVariable(const Descriptor* descriptor,
                              const Options& options,
                              std::map<std::string, std::string>* variables);

bool GetBootstrapBasename(const Options& options, const std::string& basename,
                          std::string* bootstrap_basename);
bool MaybeBootstrap(const Options& options, GeneratorContext* generator_context,
                    bool bootstrap_flag, std::string* basename);
bool IsBootstrapProto(const Options& options, const FileDescriptor* file);

// Name space of the proto file. This namespace is such that the string
// "<namespace>::some_name" is the correct fully qualified namespace.
// This means if the package is empty the namespace is "", and otherwise
// the namespace is "::foo::bar::...::baz" without trailing semi-colons.
std::string Namespace(const FileDescriptor* d, const Options& options);
std::string Namespace(const Descriptor* d, const Options& options);
std::string Namespace(const FieldDescriptor* d, const Options& options);
std::string Namespace(const EnumDescriptor* d, const Options& options);

// Returns true if it's safe to reset "field" to zero.
bool CanInitializeByZeroing(const FieldDescriptor* field);

std::string ClassName(const Descriptor* descriptor);
std::string ClassName(const EnumDescriptor* enum_descriptor);

std::string QualifiedClassName(const Descriptor* d, const Options& options);
std::string QualifiedClassName(const EnumDescriptor* d, const Options& options);

std::string QualifiedClassName(const Descriptor* d);
std::string QualifiedClassName(const EnumDescriptor* d);

// DEPRECATED just use ClassName or QualifiedClassName, a boolean is very
// unreadable at the callsite.
// Returns the non-nested type name for the given type.  If "qualified" is
// true, prefix the type with the full namespace.  For example, if you had:
//   package foo.bar;
//   message Baz { message Moo {} }
// Then the qualified ClassName for Moo would be:
//   ::foo::bar::Baz_Moo
// While the non-qualified version would be:
//   Baz_Moo
inline std::string ClassName(const Descriptor* descriptor, bool qualified) {
  return qualified ? QualifiedClassName(descriptor, Options())
                   : ClassName(descriptor);
}

inline std::string ClassName(const EnumDescriptor* descriptor, bool qualified) {
  return qualified ? QualifiedClassName(descriptor, Options())
                   : ClassName(descriptor);
}

// Returns the extension name prefixed with the class name if nested but without
// the package name.
std::string ExtensionName(const FieldDescriptor* d);

std::string QualifiedExtensionName(const FieldDescriptor* d,
                                   const Options& options);
std::string QualifiedExtensionName(const FieldDescriptor* d);

// Type name of default instance.
std::string DefaultInstanceType(const Descriptor* descriptor,
                                const Options& options, bool split = false);

// Non-qualified name of the default_instance of this message.
std::string DefaultInstanceName(const Descriptor* descriptor,
                                const Options& options, bool split = false);

// Non-qualified name of the default instance pointer. This is used only for
// implicit weak fields, where we need an extra indirection.
std::string DefaultInstancePtr(const Descriptor* descriptor,
                               const Options& options, bool split = false);

// Fully qualified name of the default_instance of this message.
std::string QualifiedDefaultInstanceName(const Descriptor* descriptor,
                                         const Options& options,
                                         bool split = false);

// Fully qualified name of the default instance pointer.
std::string QualifiedDefaultInstancePtr(const Descriptor* descriptor,
                                        const Options& options,
                                        bool split = false);

// DescriptorTable variable name.
std::string DescriptorTableName(const FileDescriptor* file,
                                const Options& options);

// When declaring symbol externs from another file, this macro will supply the
// dllexport needed for the target file, if any.
std::string FileDllExport(const FileDescriptor* file, const Options& options);

// Name of the base class: google::protobuf::Message or google::protobuf::MessageLite.
std::string SuperClassName(const Descriptor* descriptor,
                           const Options& options);

// Adds an underscore if necessary to prevent conflicting with a keyword.
std::string ResolveKeyword(const std::string& name);

// Get the (unqualified) name that should be used for this field in C++ code.
// The name is coerced to lower-case to emulate proto1 behavior.  People
// should be using lowercase-with-underscores style for proto field names
// anyway, so normally this just returns field->name().
std::string FieldName(const FieldDescriptor* field);

// Returns the (unqualified) private member name for this field in C++ code.
std::string FieldMemberName(const FieldDescriptor* field, bool split);

// Returns an estimate of the compiler's alignment for the field.  This
// can't guarantee to be correct because the generated code could be compiled on
// different systems with different alignment rules.  The estimates below assume
// 64-bit pointers.
int EstimateAlignmentSize(const FieldDescriptor* field);

// Get the unqualified name that should be used for a field's field
// number constant.
std::string FieldConstantName(const FieldDescriptor* field);

// Returns the scope where the field was defined (for extensions, this is
// different from the message type to which the field applies).
inline const Descriptor* FieldScope(const FieldDescriptor* field) {
  return field->is_extension() ? field->extension_scope()
                               : field->containing_type();
}

// Returns the fully-qualified type name field->message_type().  Usually this
// is just ClassName(field->message_type(), true);
std::string FieldMessageTypeName(const FieldDescriptor* field,
                                 const Options& options);

// Get the C++ type name for a primitive type (e.g. "double", "::google::protobuf::int32", etc.).
const char* PrimitiveTypeName(FieldDescriptor::CppType type);
std::string PrimitiveTypeName(const Options& options,
                              FieldDescriptor::CppType type);

// Get the declared type name in CamelCase format, as is used e.g. for the
// methods of WireFormat.  For example, TYPE_INT32 becomes "Int32".
const char* DeclaredTypeMethodName(FieldDescriptor::Type type);

// Return the code that evaluates to the number when compiled.
std::string Int32ToString(int number);

// Get code that evaluates to the field's default value.
std::string DefaultValue(const Options& options, const FieldDescriptor* field);

// Compatibility function for callers outside proto2.
std::string DefaultValue(const FieldDescriptor* field);

// Convert a file name into a valid identifier.
std::string FilenameIdentifier(const std::string& filename);

// For each .proto file generates a unique name. To prevent collisions of
// symbols in the global namespace
std::string UniqueName(const std::string& name, const std::string& filename,
                       const Options& options);
inline std::string UniqueName(const std::string& name, const FileDescriptor* d,
                              const Options& options) {
  return UniqueName(name, d->name(), options);
}
inline std::string UniqueName(const std::string& name, const Descriptor* d,
                              const Options& options) {
  return UniqueName(name, d->file(), options);
}
inline std::string UniqueName(const std::string& name, const EnumDescriptor* d,
                              const Options& options) {
  return UniqueName(name, d->file(), options);
}
inline std::string UniqueName(const std::string& name,
                              const ServiceDescriptor* d,
                              const Options& options) {
  return UniqueName(name, d->file(), options);
}

// Versions for call sites that only support the internal runtime (like proto1
// support).
inline Options InternalRuntimeOptions() {
  Options options;
  options.opensource_runtime = false;
  return options;
}
inline std::string UniqueName(const std::string& name,
                              const std::string& filename) {
  return UniqueName(name, filename, InternalRuntimeOptions());
}
inline std::string UniqueName(const std::string& name,
                              const FileDescriptor* d) {
  return UniqueName(name, d->name(), InternalRuntimeOptions());
}
inline std::string UniqueName(const std::string& name, const Descriptor* d) {
  return UniqueName(name, d->file(), InternalRuntimeOptions());
}
inline std::string UniqueName(const std::string& name,
                              const EnumDescriptor* d) {
  return UniqueName(name, d->file(), InternalRuntimeOptions());
}
inline std::string UniqueName(const std::string& name,
                              const ServiceDescriptor* d) {
  return UniqueName(name, d->file(), InternalRuntimeOptions());
}

// Return the qualified C++ name for a file level symbol.
std::string QualifiedFileLevelSymbol(const FileDescriptor* file,
                                     const std::string& name,
                                     const Options& options);

// Escape C++ trigraphs by escaping question marks to \?
std::string EscapeTrigraphs(const std::string& to_escape);

// Escaped function name to eliminate naming conflict.
std::string SafeFunctionName(const Descriptor* descriptor,
                             const FieldDescriptor* field,
                             const std::string& prefix);

// Returns true if generated messages have public unknown fields accessors
inline bool PublicUnknownFieldsAccessors(const Descriptor* message) {
  return message->file()->syntax() != FileDescriptor::SYNTAX_PROTO3;
}

// Returns the optimize mode for <file>, respecting <options.enforce_lite>.
FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
                                        const Options& options);

// Determines whether unknown fields will be stored in an UnknownFieldSet or
// a string.
inline bool UseUnknownFieldSet(const FileDescriptor* file,
                               const Options& options) {
  return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME;
}

inline bool IsWeak(const FieldDescriptor* field, const Options& options) {
  if (field->options().weak()) {
    GOOGLE_CHECK(!options.opensource_runtime);
    return true;
  }
  return false;
}

bool IsStringInlined(const FieldDescriptor* descriptor, const Options& options);

// For a string field, returns the effective ctype.  If the actual ctype is
// not supported, returns the default of STRING.
FieldOptions::CType EffectiveStringCType(const FieldDescriptor* field,
                                         const Options& options);

inline bool IsCord(const FieldDescriptor* field, const Options& options) {
  return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
         EffectiveStringCType(field, options) == FieldOptions::CORD;
}

inline bool IsString(const FieldDescriptor* field, const Options& options) {
  return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
         EffectiveStringCType(field, options) == FieldOptions::STRING;
}

inline bool IsStringPiece(const FieldDescriptor* field,
                          const Options& options) {
  return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
         EffectiveStringCType(field, options) == FieldOptions::STRING_PIECE;
}

class MessageSCCAnalyzer;

// Does the given FileDescriptor use lazy fields?
bool HasLazyFields(const FileDescriptor* file, const Options& options,
                   MessageSCCAnalyzer* scc_analyzer);

// Is the given field a supported lazy field?
bool IsLazy(const FieldDescriptor* field, const Options& options,
            MessageSCCAnalyzer* scc_analyzer);

// Is this an explicit (non-profile driven) lazy field, as denoted by
// lazy/unverified_lazy in the descriptor?
inline bool IsExplicitLazy(const FieldDescriptor* field) {
  return field->options().lazy() || field->options().unverified_lazy();
}

bool IsEagerlyVerifiedLazy(const FieldDescriptor* field, const Options& options,
                           MessageSCCAnalyzer* scc_analyzer);

bool IsLazilyVerifiedLazy(const FieldDescriptor* field, const Options& options);

// Is the given message being split (go/pdsplit)?
bool ShouldSplit(const Descriptor* desc, const Options& options);

// Is the given field being split out?
bool ShouldSplit(const FieldDescriptor* field, const Options& options);

inline bool IsFieldUsed(const FieldDescriptor* /* field */,
                        const Options& /* options */) {
  return true;
}

// Returns true if "field" is stripped.
inline bool IsFieldStripped(const FieldDescriptor* /*field*/,
                            const Options& /*options*/) {
  return false;
}

// Does the file contain any definitions that need extension_set.h?
bool HasExtensionsOrExtendableMessage(const FileDescriptor* file);

// Does the file have any repeated fields, necessitating the file to include
// repeated_field.h? This does not include repeated extensions, since those are
// all stored internally in an ExtensionSet, not a separate RepeatedField*.
bool HasRepeatedFields(const FileDescriptor* file);

// Does the file have any string/bytes fields with ctype=STRING_PIECE? This
// does not include extensions, since ctype is ignored for extensions.
bool HasStringPieceFields(const FileDescriptor* file, const Options& options);

// Does the file have any string/bytes fields with ctype=CORD? This does not
// include extensions, since ctype is ignored for extensions.
bool HasCordFields(const FileDescriptor* file, const Options& options);

// Does the file have any map fields, necessitating the file to include
// map_field_inl.h and map.h.
bool HasMapFields(const FileDescriptor* file);

// Does this file have any enum type definitions?
bool HasEnumDefinitions(const FileDescriptor* file);

// Does this file have generated parsing, serialization, and other
// standard methods for which reflection-based fallback implementations exist?
inline bool HasGeneratedMethods(const FileDescriptor* file,
                                const Options& options) {
  return GetOptimizeFor(file, options) != FileOptions::CODE_SIZE;
}

// Do message classes in this file have descriptor and reflection methods?
inline bool HasDescriptorMethods(const FileDescriptor* file,
                                 const Options& options) {
  return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME;
}

// Should we generate generic services for this file?
inline bool HasGenericServices(const FileDescriptor* file,
                               const Options& options) {
  return file->service_count() > 0 &&
         GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME &&
         file->options().cc_generic_services();
}

inline bool IsProto2MessageSet(const Descriptor* descriptor,
                               const Options& options) {
  return !options.opensource_runtime &&
         options.enforce_mode != EnforceOptimizeMode::kLiteRuntime &&
         !options.lite_implicit_weak_fields &&
         descriptor->options().message_set_wire_format() &&
         descriptor->full_name() == "google.protobuf.bridge.MessageSet";
}

inline bool IsMapEntryMessage(const Descriptor* descriptor) {
  return descriptor->options().map_entry();
}

// Returns true if the field's CPPTYPE is string or message.
bool IsStringOrMessage(const FieldDescriptor* field);

std::string UnderscoresToCamelCase(const std::string& input,
                                   bool cap_next_letter);

inline bool IsProto3(const FileDescriptor* file) {
  return file->syntax() == FileDescriptor::SYNTAX_PROTO3;
}

inline bool HasHasbit(const FieldDescriptor* field) {
  // This predicate includes proto3 message fields only if they have "optional".
  //   Foo submsg1 = 1;           // HasHasbit() == false
  //   optional Foo submsg2 = 2;  // HasHasbit() == true
  // This is slightly odd, as adding "optional" to a singular proto3 field does
  // not change the semantics or API. However whenever any field in a message
  // has a hasbit, it forces reflection to include hasbit offsets for *all*
  // fields, even if almost all of them are set to -1 (no hasbit). So to avoid
  // causing a sudden size regression for ~all proto3 messages, we give proto3
  // message fields a hasbit only if "optional" is present. If the user is
  // explicitly writing "optional", it is likely they are writing it on
  // primitive fields also.
  return (field->has_optional_keyword() || field->is_required()) &&
         !field->options().weak();
}

// Returns true if 'enum' semantics are such that unknown values are preserved
// in the enum field itself, rather than going to the UnknownFieldSet.
inline bool HasPreservingUnknownEnumSemantics(const FieldDescriptor* field) {
  return field->file()->syntax() == FileDescriptor::SYNTAX_PROTO3;
}

inline bool IsCrossFileMessage(const FieldDescriptor* field) {
  return field->type() == FieldDescriptor::TYPE_MESSAGE &&
         field->message_type()->file() != field->file();
}

inline std::string MakeDefaultName(const FieldDescriptor* field) {
  return StrCat("_i_give_permission_to_break_this_code_default_",
                      FieldName(field), "_");
}

// Semantically distinct from MakeDefaultName in that it gives the C++ code
// referencing a default field from the message scope, rather than just the
// variable name.
// For example, declarations of default variables should always use just
// MakeDefaultName to produce code like:
//   Type _i_give_permission_to_break_this_code_default_field_;
//
// Code that references these should use MakeDefaultFieldName, in case the field
// exists at some nested level like:
//   internal_container_._i_give_permission_to_break_this_code_default_field_;
inline std::string MakeDefaultFieldName(const FieldDescriptor* field) {
  return StrCat("Impl_::", MakeDefaultName(field));
}

inline std::string MakeVarintCachedSizeName(const FieldDescriptor* field) {
  return StrCat("_", FieldName(field), "_cached_byte_size_");
}

// Semantically distinct from MakeVarintCachedSizeName in that it gives the C++
// code referencing the object from the message scope, rather than just the
// variable name.
// For example, declarations of default variables should always use just
// MakeVarintCachedSizeName to produce code like:
//   Type _field_cached_byte_size_;
//
// Code that references these variables should use
// MakeVarintCachedSizeFieldName, in case the field exists at some nested level
// like:
//   internal_container_._field_cached_byte_size_;
inline std::string MakeVarintCachedSizeFieldName(const FieldDescriptor* field,
                                                 bool split) {
  return StrCat("_impl_.", split ? "_split_->" : "", "_",
                      FieldName(field), "_cached_byte_size_");
}

// Note: A lot of libraries detect Any protos based on Descriptor::full_name()
// while the two functions below use FileDescriptor::name(). In a sane world the
// two approaches should be equivalent. But if you are dealing with descriptors
// from untrusted sources, you might need to match semantics across libraries.
bool IsAnyMessage(const FileDescriptor* descriptor, const Options& options);
bool IsAnyMessage(const Descriptor* descriptor, const Options& options);

bool IsWellKnownMessage(const FileDescriptor* descriptor);

inline std::string IncludeGuard(const FileDescriptor* file, bool pb_h,
                                const Options& options) {
  // If we are generating a .pb.h file and the proto_h option is enabled, then
  // the .pb.h gets an extra suffix.
  std::string filename_identifier = FilenameIdentifier(
      file->name() + (pb_h && options.proto_h ? ".pb.h" : ""));

  if (IsWellKnownMessage(file)) {
    // For well-known messages we need third_party/protobuf and net/proto2 to
    // have distinct include guards, because some source files include both and
    // both need to be defined (the third_party copies will be in the
    // google::protobuf_opensource namespace).
    return MacroPrefix(options) + "_INCLUDED_" + filename_identifier;
  } else {
    // Ideally this case would use distinct include guards for opensource and
    // google3 protos also.  (The behavior of "first #included wins" is not
    // ideal).  But unfortunately some legacy code includes both and depends on
    // the identical include guards to avoid compile errors.
    //
    // We should clean this up so that this case can be removed.
    return "GOOGLE_PROTOBUF_INCLUDED_" + filename_identifier;
  }
}

// Returns the OptimizeMode for this file, furthermore it updates a status
// bool if has_opt_codesize_extension is non-null. If this status bool is true
// it means this file contains an extension that itself is defined as
// optimized_for = CODE_SIZE.
FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
                                        const Options& options,
                                        bool* has_opt_codesize_extension);
inline FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
                                               const Options& options) {
  return GetOptimizeFor(file, options, nullptr);
}
inline bool NeedsEagerDescriptorAssignment(const FileDescriptor* file,
                                           const Options& options) {
  bool has_opt_codesize_extension;
  if (GetOptimizeFor(file, options, &has_opt_codesize_extension) ==
          FileOptions::CODE_SIZE &&
      has_opt_codesize_extension) {
    // If this filedescriptor contains an extension from another file which
    // is optimized_for = CODE_SIZE. We need to be careful in the ordering so
    // we eagerly build the descriptors in the dependencies before building
    // the descriptors of this file.
    return true;
  } else {
    // If we have a generated code based parser we never need eager
    // initialization of descriptors of our deps.
    return false;
  }
}

// This orders the messages in a .pb.cc as it's outputted by file.cc
void FlattenMessagesInFile(const FileDescriptor* file,
                           std::vector<const Descriptor*>* result);
inline std::vector<const Descriptor*> FlattenMessagesInFile(
    const FileDescriptor* file) {
  std::vector<const Descriptor*> result;
  FlattenMessagesInFile(file, &result);
  return result;
}

template <typename F>
void ForEachMessage(const Descriptor* descriptor, F&& func) {
  for (int i = 0; i < descriptor->nested_type_count(); i++)
    ForEachMessage(descriptor->nested_type(i), std::forward<F&&>(func));
  func(descriptor);
}

template <typename F>
void ForEachMessage(const FileDescriptor* descriptor, F&& func) {
  for (int i = 0; i < descriptor->message_type_count(); i++)
    ForEachMessage(descriptor->message_type(i), std::forward<F&&>(func));
}

bool HasWeakFields(const Descriptor* desc, const Options& options);
bool HasWeakFields(const FileDescriptor* desc, const Options& options);

// Returns true if the "required" restriction check should be ignored for the
// given field.
inline static bool ShouldIgnoreRequiredFieldCheck(const FieldDescriptor* field,
                                                  const Options& options) {
  // Do not check "required" for lazily verified lazy fields.
  return IsLazilyVerifiedLazy(field, options);
}

struct MessageAnalysis {
  bool is_recursive = false;
  bool contains_cord = false;
  bool contains_extension = false;
  bool contains_required = false;
  bool contains_weak = false;  // Implicit weak as well.
};

// This class is used in FileGenerator, to ensure linear instead of
// quadratic performance, if we do this per message we would get O(V*(V+E)).
// Logically this is just only used in message.cc, but in the header for
// FileGenerator to help share it.
class PROTOC_EXPORT MessageSCCAnalyzer {
 public:
  explicit MessageSCCAnalyzer(const Options& options) : options_(options) {}

  MessageAnalysis GetSCCAnalysis(const SCC* scc);

  bool HasRequiredFields(const Descriptor* descriptor) {
    MessageAnalysis result = GetSCCAnalysis(GetSCC(descriptor));
    return result.contains_required || result.contains_extension;
  }
  bool HasWeakField(const Descriptor* descriptor) {
    MessageAnalysis result = GetSCCAnalysis(GetSCC(descriptor));
    return result.contains_weak;
  }
  const SCC* GetSCC(const Descriptor* descriptor) {
    return analyzer_.GetSCC(descriptor);
  }

 private:
  struct DepsGenerator {
    std::vector<const Descriptor*> operator()(const Descriptor* desc) const {
      std::vector<const Descriptor*> deps;
      for (int i = 0; i < desc->field_count(); i++) {
        if (desc->field(i)->message_type()) {
          deps.push_back(desc->field(i)->message_type());
        }
      }
      return deps;
    }
  };
  SCCAnalyzer<DepsGenerator> analyzer_;
  Options options_;
  std::map<const SCC*, MessageAnalysis> analysis_cache_;
};

void ListAllFields(const Descriptor* d,
                   std::vector<const FieldDescriptor*>* fields);
void ListAllFields(const FileDescriptor* d,
                   std::vector<const FieldDescriptor*>* fields);

template <class T>
void ForEachField(const Descriptor* d, T&& func) {
  for (int i = 0; i < d->nested_type_count(); i++) {
    ForEachField(d->nested_type(i), std::forward<T&&>(func));
  }
  for (int i = 0; i < d->extension_count(); i++) {
    func(d->extension(i));
  }
  for (int i = 0; i < d->field_count(); i++) {
    func(d->field(i));
  }
}

template <class T>
void ForEachField(const FileDescriptor* d, T&& func) {
  for (int i = 0; i < d->message_type_count(); i++) {
    ForEachField(d->message_type(i), std::forward<T&&>(func));
  }
  for (int i = 0; i < d->extension_count(); i++) {
    func(d->extension(i));
  }
}

void ListAllTypesForServices(const FileDescriptor* fd,
                             std::vector<const Descriptor*>* types);

// Indicates whether we should use implicit weak fields for this file.
bool UsingImplicitWeakFields(const FileDescriptor* file,
                             const Options& options);

// Indicates whether to treat this field as implicitly weak.
bool IsImplicitWeakField(const FieldDescriptor* field, const Options& options,
                         MessageSCCAnalyzer* scc_analyzer);

inline bool HasSimpleBaseClass(const Descriptor* desc, const Options& options) {
  if (!HasDescriptorMethods(desc->file(), options)) return false;
  if (desc->extension_range_count() != 0) return false;
  if (desc->field_count() == 0) return true;
  // TODO(jorg): Support additional common message types with only one
  // or two fields
  return false;
}

inline bool HasSimpleBaseClasses(const FileDescriptor* file,
                                 const Options& options) {
  bool v = false;
  ForEachMessage(file, [&v, &options](const Descriptor* desc) {
    v |= HasSimpleBaseClass(desc, options);
  });
  return v;
}

inline std::string SimpleBaseClass(const Descriptor* desc,
                                   const Options& options) {
  if (!HasDescriptorMethods(desc->file(), options)) return "";
  if (desc->extension_range_count() != 0) return "";
  if (desc->field_count() == 0) {
    return "ZeroFieldsBase";
  }
  // TODO(jorg): Support additional common message types with only one
  // or two fields
  return "";
}

// Returns true if this message has a _tracker_ field.
inline bool HasTracker(const Descriptor* desc, const Options& options) {
  return options.field_listener_options.inject_field_listener_events &&
         desc->file()->options().optimize_for() !=
             google::protobuf::FileOptions::LITE_RUNTIME;
}

// Returns true if this message needs an Impl_ struct for it's data.
inline bool HasImplData(const Descriptor* desc, const Options& options) {
  return !HasSimpleBaseClass(desc, options);
}

// Formatter is a functor class which acts as a closure around printer and
// the variable map. It's much like printer->Print except it supports both named
// variables that are substituted using a key value map and direct arguments. In
// the format string $1$, $2$, etc... are substituted for the first, second, ...
// direct argument respectively in the format call, it accepts both strings and
// integers. The implementation verifies all arguments are used and are "first"
// used in order of appearance in the argument list. For example,
//
// Format("return array[$1$];", 3) -> "return array[3];"
// Format("array[$2$] = $1$;", "Bla", 3) -> FATAL error (wrong order)
// Format("array[$1$] = $2$;", 3, "Bla") -> "array[3] = Bla;"
//
// The arguments can be used more than once like
//
// Format("array[$1$] = $2$;  // Index = $1$", 3, "Bla") ->
//        "array[3] = Bla;  // Index = 3"
//
// If you use more arguments use the following style to help the reader,
//
// Format("int $1$() {\n"
//        "  array[$2$] = $3$;\n"
//        "  return $4$;"
//        "}\n",
//        funname, // 1
//        idx,  // 2
//        varname,  // 3
//        retval);  // 4
//
// but consider using named variables. Named variables like $foo$, with some
// identifier foo, are looked up in the map. One additional feature is that
// spaces are accepted between the '$' delimiters, $ foo$ will
// substitute to " bar" if foo stands for "bar", but in case it's empty
// will substitute to "". Hence, for example,
//
// Format(vars, "$dllexport $void fun();") -> "void fun();"
//                                            "__declspec(export) void fun();"
//
// which is convenient to prevent double, leading or trailing spaces.
class PROTOC_EXPORT Formatter {
 public:
  explicit Formatter(io::Printer* printer) : printer_(printer) {}
  Formatter(io::Printer* printer,
            const std::map<std::string, std::string>& vars)
      : printer_(printer), vars_(vars) {}

  template <typename T>
  void Set(const std::string& key, const T& value) {
    vars_[key] = ToString(value);
  }

  void AddMap(const std::map<std::string, std::string>& vars) {
    for (const auto& keyval : vars) vars_[keyval.first] = keyval.second;
  }

  template <typename... Args>
  void operator()(const char* format, const Args&... args) const {
    printer_->FormatInternal({ToString(args)...}, vars_, format);
  }

  void Indent() const { printer_->Indent(); }
  void Outdent() const { printer_->Outdent(); }
  io::Printer* printer() const { return printer_; }

  class PROTOC_EXPORT ScopedIndenter {
   public:
    explicit ScopedIndenter(Formatter* format) : format_(format) {
      format_->Indent();
    }
    ~ScopedIndenter() { format_->Outdent(); }

   private:
    Formatter* format_;
  };

  PROTOBUF_NODISCARD ScopedIndenter ScopedIndent() {
    return ScopedIndenter(this);
  }
  template <typename... Args>
  PROTOBUF_NODISCARD ScopedIndenter ScopedIndent(const char* format,
                                                 const Args&&... args) {
    (*this)(format, static_cast<Args&&>(args)...);
    return ScopedIndenter(this);
  }

  class PROTOC_EXPORT SaveState {
   public:
    explicit SaveState(Formatter* format)
        : format_(format), vars_(format->vars_) {}
    ~SaveState() { format_->vars_.swap(vars_); }

   private:
    Formatter* format_;
    std::map<std::string, std::string> vars_;
  };

 private:
  io::Printer* printer_;
  std::map<std::string, std::string> vars_;

  // Convenience overloads to accept different types as arguments.
  static std::string ToString(const std::string& s) { return s; }
  template <typename I, typename = typename std::enable_if<
                            std::is_integral<I>::value>::type>
  static std::string ToString(I x) {
    return StrCat(x);
  }
  static std::string ToString(strings::Hex x) { return StrCat(x); }
  static std::string ToString(const FieldDescriptor* d) { return Payload(d); }
  static std::string ToString(const Descriptor* d) { return Payload(d); }
  static std::string ToString(const EnumDescriptor* d) { return Payload(d); }
  static std::string ToString(const EnumValueDescriptor* d) {
    return Payload(d);
  }
  static std::string ToString(const OneofDescriptor* d) { return Payload(d); }

  template <typename Descriptor>
  static std::string Payload(const Descriptor* descriptor) {
    std::vector<int> path;
    descriptor->GetLocationPath(&path);
    GeneratedCodeInfo::Annotation annotation;
    for (int index : path) {
      annotation.add_path(index);
    }
    annotation.set_source_file(descriptor->file()->name());
    return annotation.SerializeAsString();
  }
};

template <class T>
void PrintFieldComment(const Formatter& format, const T* field) {
  // Print the field's (or oneof's) proto-syntax definition as a comment.
  // We don't want to print group bodies so we cut off after the first
  // line.
  DebugStringOptions options;
  options.elide_group_body = true;
  options.elide_oneof_body = true;
  std::string def = field->DebugStringWithOptions(options);
  format("// $1$\n", def.substr(0, def.find_first_of('\n')));
}

class PROTOC_EXPORT NamespaceOpener {
 public:
  explicit NamespaceOpener(const Formatter& format)
      : printer_(format.printer()) {}
  NamespaceOpener(const std::string& name, const Formatter& format)
      : NamespaceOpener(format) {
    ChangeTo(name);
  }
  ~NamespaceOpener() { ChangeTo(""); }

  void ChangeTo(const std::string& name) {
    std::vector<std::string> new_stack_ =
        Split(name, "::", true);
    size_t len = std::min(name_stack_.size(), new_stack_.size());
    size_t common_idx = 0;
    while (common_idx < len) {
      if (name_stack_[common_idx] != new_stack_[common_idx]) break;
      common_idx++;
    }
    for (auto it = name_stack_.crbegin();
         it != name_stack_.crend() - common_idx; ++it) {
      if (*it == "PROTOBUF_NAMESPACE_ID") {
        printer_->Print("PROTOBUF_NAMESPACE_CLOSE\n");
      } else {
        printer_->Print("}  // namespace $ns$\n", "ns", *it);
      }
    }
    name_stack_.swap(new_stack_);
    for (size_t i = common_idx; i < name_stack_.size(); ++i) {
      if (name_stack_[i] == "PROTOBUF_NAMESPACE_ID") {
        printer_->Print("PROTOBUF_NAMESPACE_OPEN\n");
      } else {
        printer_->Print("namespace $ns$ {\n", "ns", name_stack_[i]);
      }
    }
  }

 private:
  io::Printer* printer_;
  std::vector<std::string> name_stack_;
};

enum class Utf8CheckMode {
  kStrict = 0,  // Parsing will fail if non UTF-8 data is in string fields.
  kVerify = 1,  // Only log an error but parsing will succeed.
  kNone = 2,    // No UTF-8 check.
};

Utf8CheckMode GetUtf8CheckMode(const FieldDescriptor* field,
                               const Options& options);

void GenerateUtf8CheckCodeForString(const FieldDescriptor* field,
                                    const Options& options, bool for_parse,
                                    const char* parameters,
                                    const Formatter& format);

void GenerateUtf8CheckCodeForCord(const FieldDescriptor* field,
                                  const Options& options, bool for_parse,
                                  const char* parameters,
                                  const Formatter& format);

template <typename T>
struct FieldRangeImpl {
  struct Iterator {
    using iterator_category = std::forward_iterator_tag;
    using value_type = const FieldDescriptor*;
    using difference_type = int;

    value_type operator*() { return descriptor->field(idx); }

    friend bool operator==(const Iterator& a, const Iterator& b) {
      GOOGLE_DCHECK(a.descriptor == b.descriptor);
      return a.idx == b.idx;
    }
    friend bool operator!=(const Iterator& a, const Iterator& b) {
      return !(a == b);
    }

    Iterator& operator++() {
      idx++;
      return *this;
    }

    int idx;
    const T* descriptor;
  };

  Iterator begin() const { return {0, descriptor}; }
  Iterator end() const { return {descriptor->field_count(), descriptor}; }

  const T* descriptor;
};

template <typename T>
FieldRangeImpl<T> FieldRange(const T* desc) {
  return {desc};
}

struct OneOfRangeImpl {
  struct Iterator {
    using iterator_category = std::forward_iterator_tag;
    using value_type = const OneofDescriptor*;
    using difference_type = int;

    value_type operator*() { return descriptor->oneof_decl(idx); }

    friend bool operator==(const Iterator& a, const Iterator& b) {
      GOOGLE_DCHECK(a.descriptor == b.descriptor);
      return a.idx == b.idx;
    }
    friend bool operator!=(const Iterator& a, const Iterator& b) {
      return !(a == b);
    }

    Iterator& operator++() {
      idx++;
      return *this;
    }

    int idx;
    const Descriptor* descriptor;
  };

  Iterator begin() const { return {0, descriptor}; }
  Iterator end() const {
    return {descriptor->real_oneof_decl_count(), descriptor};
  }

  const Descriptor* descriptor;
};

inline OneOfRangeImpl OneOfRange(const Descriptor* desc) { return {desc}; }

PROTOC_EXPORT std::string StripProto(const std::string& filename);

bool EnableMessageOwnedArena(const Descriptor* desc, const Options& options);

bool EnableMessageOwnedArenaTrial(const Descriptor* desc,
                                  const Options& options);

bool ShouldVerify(const Descriptor* descriptor, const Options& options,
                  MessageSCCAnalyzer* scc_analyzer);
bool ShouldVerify(const FileDescriptor* file, const Options& options,
                  MessageSCCAnalyzer* scc_analyzer);

// Indicates whether to use predefined verify methods for a given message. If a
// message is "simple" and needs no special verification per field (e.g. message
// field, repeated packed, UTF8 string, etc.), we can use either VerifySimple or
// VerifySimpleAlwaysCheckInt32 methods as all verification can be done based on
// the wire type.
//
// Otherwise, we need "custom" verify methods tailored to a message to pass
// which field needs a special verification; i.e. InternalVerify.
enum class VerifySimpleType {
  kSimpleInt32Never,   // Use VerifySimple
  kSimpleInt32Always,  // Use VerifySimpleAlwaysCheckInt32
  kCustom,             // Use InternalVerify and check only for int32
  kCustomInt32Never,   // Use InternalVerify but never check for int32
  kCustomInt32Always,  // Use InternalVerify and always check for int32
};

// Returns VerifySimpleType if messages can be verified by predefined methods.
VerifySimpleType ShouldVerifySimple(const Descriptor* descriptor);

bool IsUtf8String(const FieldDescriptor* field);

bool HasMessageFieldOrExtension(const Descriptor* desc);

}  // namespace cpp
}  // namespace compiler
}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__