JZsdk_Uart_UartDeal.c
17.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#include <sys/time.h>
#include "JZsdkLib.h"
#include "BaseConfig.h"
#include "JZsdk_TaskManagement/TaskManagement.h"
#include "JZsdk_Uart_UartDeal.h"
#include "Hal_Recv/HalRecv.h"
#if APP_VERSION == APP_PSDK
#include "data_transmission/test_data_transmission.h"
#endif
// 串口参数结构体
typedef struct
{
int UartFd; // 串口识别符
int UartDevName; //串口名
unsigned char Message[2048]; // 传递的字符串
int MessageLength; // 字符串的长度
int ResLen; //剩余长度
pthread_mutex_t WriteMutex; // 互斥锁
pthread_mutex_t ReadMutex; // 互斥锁
pthread_cond_t cond; // 条件变量
} s_SerialArgs;
// 再注册串口
typedef struct
{
int UartFd; // 串口识别符
int UartDevName; //串口名
int BitRate; //波特率
} s_SerialInitArg;
//不同串口的描述符
static int Uart_4G_fd;
static int Uart_DEV1_fd;
static int Uart_DEV2_fd;
//用于判断关闭的是哪个串口
static int Uart_4G_Switch = JZ_FLAGCODE_OFF;
static int Uart_DEV1_Switch = JZ_FLAGCODE_OFF;
static int Uart_DEV2_Switch = JZ_FLAGCODE_OFF;
static int Recv_Thread = JZ_FLAGCODE_OFF; //用于判断接收线程是否成功退出
static int Deal_Thread = JZ_FLAGCODE_OFF; //用于判断处理线程是否成功退出
static void *UartDeal_rece(void *arg);
static void *UartDeal_deal(void *arg);
static void *Uart_Recv_deal(void *arg);
/******************************************************************
初始化串口接收和处理
传入 串口描述符 和 串口名
******************************************************************/
int JZsdk_Uart_UartDeal_Receive(int Uart_fd, int Uart_Dev_name)
{
int ret = 0;
//根据串口名,将串口描述符赋值给对应的串口,并打开对应的线程开关
if (Uart_Dev_name == UART_DEV_1)
{
Uart_DEV1_fd = Uart_fd;
Uart_DEV1_Switch = JZ_FLAGCODE_ON;
}
else if (Uart_Dev_name == UART_DEV_2)
{
Uart_DEV2_fd = Uart_fd;
Uart_DEV2_Switch = JZ_FLAGCODE_ON;
}
else if (Uart_Dev_name == UART_4G)
{
Uart_4G_fd = Uart_fd;
Uart_4G_Switch = JZ_FLAGCODE_ON;
}
else
{
JZSDK_LOG_ERROR("Uart_Dev_name error");
return JZ_ERROR_SYSTEM_MODULE_CODE_FAILURE;
}
s_SerialArgs *parameter = (s_SerialArgs *)malloc(sizeof(s_SerialArgs));
parameter->UartFd = Uart_fd;
parameter->UartDevName = Uart_Dev_name;
parameter->MessageLength = 0;
memset(parameter->Message, 0, sizeof(parameter->Message));
pthread_mutex_init(¶meter->WriteMutex, NULL);
pthread_mutex_init(¶meter->ReadMutex, NULL);
pthread_cond_init(¶meter->cond, NULL);
// 创建串口数据接收线程
pthread_t receiveThread;
pthread_t SerialDealThread;
pthread_attr_t task_attribute1; // 线程属性
pthread_attr_t task_attribute2; // 线程属性
pthread_attr_setdetachstate(&task_attribute1, PTHREAD_CREATE_DETACHED); // 设置线程分离属性
pthread_attr_setdetachstate(&task_attribute2, PTHREAD_CREATE_DETACHED); // 设置线程分离属性
pthread_attr_init(&task_attribute1);
pthread_attr_init(&task_attribute2);
// 创建串口接收线程
if (pthread_create(&receiveThread, &task_attribute1, UartDeal_rece, parameter) != 0)
{
JZSDK_LOG_ERROR("Failed to create receive thread");
return 1;
}
// 创建串口数据处理线程
if (pthread_create(&SerialDealThread, &task_attribute2, UartDeal_deal, parameter) != 0)
{
JZSDK_LOG_ERROR("Failed to create receive thread");
return 1;
}
// //创建一个串口处理线程
// pthread_t RecvThread;
// pthread_attr_t task_attribute;
// pthread_attr_setdetachstate(&task_attribute, PTHREAD_CREATE_DETACHED); // 设置线程分离属性
// pthread_attr_init(&task_attribute);
// if (pthread_create(&RecvThread, &task_attribute, Uart_Recv_deal, parameter) != 0)
// {
// JZSDK_LOG_ERROR("Failed to create receive thread");
// return 1;
// }
return 0;
}
/***
*
* 串口接收线程
*
* ***/
static void *UartDeal_rece(void *arg)
{
s_SerialArgs *args = (s_SerialArgs *)arg;
struct timeval timeout; // 超时时间
fd_set fs_read;
//获取串口描述符
int Uart_fd = args->UartFd;
//清空接收数组与初始化配置
memset(args->Message, 0, sizeof(args->Message));
args->ResLen = 0;
args->MessageLength = 0;
// 根据设备名称设置相应的线程开关
int *TheadSwtch = NULL; //线程开关
switch(args->UartDevName)
{
case UART_4G:
TheadSwtch = &Uart_4G_Switch;
break;
case UART_DEV_1:
TheadSwtch = &Uart_DEV1_Switch;
break;
case UART_DEV_2:
TheadSwtch = &Uart_DEV2_Switch;
break;
default:
return NULL; // 或者处理未知设备的情况
}
while (*TheadSwtch)
{
//重置处理时间
FD_ZERO(&fs_read);
FD_SET(Uart_fd, &fs_read);
timeout.tv_sec = 0;
timeout.tv_usec = 100000; // 设置为可变的超时时间(100毫秒)
// 检查fs_read套接字是否有数据
int ret = select(Uart_fd + 1, &fs_read, NULL, NULL, &timeout);
// 发生错误
if (ret < 0)
{
//清空缓冲区
JZSDK_LOG_ERROR("uart select error");
args->MessageLength = 0;
args->ResLen = 0;
memset(&(args->Message[0]), 0, sizeof(args->Message));
delayMs(100);
continue;
}
// 超时
else if (ret == 0)
{
continue;
}
// 如果有数据就加锁
pthread_mutex_lock(&args->WriteMutex);
// 读取串口内容
int bytesRead = read(Uart_fd, &(args->Message[args->ResLen]), (sizeof(args->Message) - args->ResLen));
//正常读取到数据
if (bytesRead > 0)
{
//计算当前的数据长度
args->MessageLength = args->ResLen + bytesRead;
// data_len+=bytesRead;
// data_len2+=args->MessageLength;
// printf("当前接收长度%d bytesRead%d bmessage%d reslen%d\n",data_len,bytesRead,data_len2,args->ResLen);
// JZSDK_LOG_INFO("从串口读取到,长度%d",(args->MessageLength-args->ResLen));
// for (int i = 0; i < (args->MessageLength-args->ResLen); i++)
// {
// JZSDK_LOG_OUTPUTHEX("%s",&args->Message[i+args->ResLen]);
// }
// 更新剩余长度
args->ResLen = 0;
}
//读取到数据为空
else if (bytesRead == 0)
{
// 串口关闭或者无数据可读
JZSDK_LOG_ERROR("Error reading from serial port is empty");
args->MessageLength = 0;
args->ResLen = 0;
memset(&(args->Message[0]), 0, sizeof(args->Message));
}
else
{
// 读取错误发生
JZSDK_LOG_ERROR("Error reading from serial port");
args->MessageLength = 0;
args->ResLen = 0;
memset(&(args->Message[0]), 0, sizeof(args->Message));
}
// 通知线程
//pthread_cond_signal(&args->cond);
pthread_mutex_unlock(&args->ReadMutex); // 解锁
// 添加适当延时,确保接收缓冲区有足够的数据
delayMs(3); // 加多了可能导致实时播放难恢复,以及声音间隔 3ms32字节 会向上约1个3ms opus一帧80字节
}
//注销相关
Recv_Thread = JZ_FLAGCODE_OFF;
// 通知线程
//pthread_cond_signal(&args->cond);
pthread_mutex_unlock(&args->ReadMutex); // 解锁
JZSDK_LOG_WARN("串口接收线程被关闭");
}
/***
*
* 串口处理线程
*
* ***/
// 串口数据处理线程函数
static void *UartDeal_deal(void *arg)
{
s_SerialArgs *args = (s_SerialArgs *)arg;
static int ResidualLength = 0; // 未处理数据长度
// 根据设备名称设置相应的线程开关
int *TheadSwtch = NULL; //线程开关
switch(args->UartDevName)
{
case UART_4G:
TheadSwtch = &Uart_4G_Switch;
break;
case UART_DEV_1:
TheadSwtch = &Uart_DEV1_Switch;
break;
case UART_DEV_2:
TheadSwtch = &Uart_DEV2_Switch;
break;
default:
return NULL; // 或者处理未知设备的情况
}
while (*TheadSwtch)
{
// 加锁
pthread_mutex_lock(&args->ReadMutex);
// 等候接收线程的通知
//pthread_cond_wait(&args->cond, &args->mutex);
// data_len+=args->MessageLength;
// printf("当前处理长度%d\n",data_len);
//如果当前存在数据
if (args->MessageLength > 0)
{
//处理数据
ResidualLength = HalRecv_type1_PreliminaryScreeningOfData(args->Message, args->MessageLength, args->UartDevName);
//如果还有剩余的长度
if (ResidualLength != 0) //将其返还到缓冲区
{
memcpy(args->Message, &(args->Message[args->MessageLength - ResidualLength]), ResidualLength);
memset(&(args->Message[ResidualLength]), 0, (sizeof(args->Message) - ResidualLength));
args->MessageLength = 0;
args->ResLen = ResidualLength;
}
else //清空一次缓冲区
{
memset(args->Message, 0, sizeof(args->Message));
args->MessageLength = 0;
args->ResLen = 0;
}
}
//如果不存在数据 或 存在异常 ,则顺便清空一次缓冲区
else
{
memset(args->Message, 0, sizeof(args->Message));
args->MessageLength = 0;
args->ResLen = 0;
}
pthread_mutex_unlock(&args->WriteMutex); // 解锁
}
Deal_Thread = JZ_FLAGCODE_OFF;
free(args); //释放掉处理结构体
JZSDK_LOG_WARN("串口处理线程被关闭");
}
/***
*
* 串口处理线程
*
* ***/
// 串口数据处理线程函数
static void *Uart_Recv_deal(void *arg)
{
s_SerialArgs *args = (s_SerialArgs *)arg;
struct timeval timeout; // 超时时间
fd_set fs_read;
static int ResidualLength = 0; // 未处理数据长度
//获取串口描述符
int Uart_fd = args->UartFd;
//清空接收数组与初始化配置
memset(args->Message, 0, sizeof(args->Message));
args->ResLen = 0;
args->MessageLength = 0;
// 根据设备名称设置相应的线程开关
int *TheadSwtch = NULL; //线程开关
switch(args->UartDevName)
{
case UART_4G:
TheadSwtch = &Uart_4G_Switch;
break;
case UART_DEV_1:
TheadSwtch = &Uart_DEV1_Switch;
break;
case UART_DEV_2:
TheadSwtch = &Uart_DEV2_Switch;
break;
default:
return NULL; // 或者处理未知设备的情况
}
while (*TheadSwtch)
{
//重置处理时间
FD_ZERO(&fs_read);
FD_SET(Uart_fd, &fs_read);
timeout.tv_sec = 0;
timeout.tv_usec = 100000; // 设置为可变的超时时间(100毫秒)
// 检查fs_read套接字是否有数据
int ret = select(Uart_fd + 1, &fs_read, NULL, NULL, &timeout);
// 发生错误
if (ret < 0)
{
//清空缓冲区
JZSDK_LOG_ERROR("uart select error");
args->MessageLength = 0;
args->ResLen = 0;
memset(&(args->Message[0]), 0, sizeof(args->Message));
continue;
}
// 超时
else if (ret == 0)
{
continue;
}
// 读取串口内容
int bytesRead = read(Uart_fd, &(args->Message[args->ResLen]), (sizeof(args->Message) - args->ResLen));
//正常读取到数据
if (bytesRead > 0)
{
//计算当前的数据长度
args->MessageLength = args->ResLen + bytesRead;
// data_len+=bytesRead;
// data_len2+=args->MessageLength;
// printf("当前接收长度%d bytesRead%d bmessage%d reslen%d\n",data_len,bytesRead,data_len2,args->ResLen);
// JZSDK_LOG_INFO("从串口读取到,长度%d",(args->MessageLength-args->ResLen));
// for (int i = 0; i < (args->MessageLength-args->ResLen); i++)
// {
// JZSDK_LOG_OUTPUTHEX("%s",&args->Message[i+args->ResLen]);
// }
// 更新剩余长度
args->ResLen = 0;
}
//读取到数据为空
else if (bytesRead == 0)
{
// 串口关闭或者无数据可读
JZSDK_LOG_ERROR("Error reading from serial port is empty");
args->MessageLength = 0;
args->ResLen = 0;
memset(&(args->Message[0]), 0, sizeof(args->Message));
}
else
{
// 读取错误发生
JZSDK_LOG_ERROR("Error reading from serial port");
args->MessageLength = 0;
args->ResLen = 0;
memset(&(args->Message[0]), 0, sizeof(args->Message));
}
//如果当前存在数据
if (args->MessageLength > 0)
{
//处理数据
ResidualLength = HalRecv_type1_PreliminaryScreeningOfData(args->Message, args->MessageLength, args->UartDevName);
//JZSDK_LOG_DEBUG("回归%d",ResidualLength);
//如果还有剩余的长度
if (ResidualLength != 0) //将其返还到缓冲区
{
memcpy(args->Message, &(args->Message[args->MessageLength - ResidualLength]), ResidualLength);
memset(&(args->Message[ResidualLength]), 0, (sizeof(args->Message) - ResidualLength));
args->MessageLength = 0;
args->ResLen = ResidualLength;
}
else //清空一次缓冲区
{
memset(args->Message, 0, sizeof(args->Message));
args->MessageLength = 0;
args->ResLen = 0;
}
}
//如果不存在数据 或 存在异常 ,则顺便清空一次缓冲区
else
{
memset(args->Message, 0, sizeof(args->Message));
args->MessageLength = 0;
args->ResLen = 0;
}
// 添加适当延时,确保接收缓冲区有足够的数据
delayMs(3); // 加多了可能导致实时播放难恢复,以及声音间隔 3ms32字节 会向上约1个3ms opus一帧80字节
}
//注销相关
Recv_Thread = JZ_FLAGCODE_OFF;
JZSDK_LOG_WARN("串口接收处理线程被关闭");
}
/********************************************************************************************************************
*
*
* 分割线
*
*
**********************************************************************************************************************/
/**********
*
* 无任务发送函数
*
* ***********/
T_JZsdkReturnCode JZsdk_Uart_UartSend_NotTask(int Uart_Name, unsigned char *str, int str_lenth)
{
if (Uart_Name == UART_4G)
{
printf("向4G设备发送\n");
write(Uart_4G_fd, str, str_lenth);
}
else if (Uart_Name == UART_DEV_1)
{
printf("向串口1号设备发送\n");
write(Uart_DEV1_fd, str, str_lenth);
}
else if (Uart_Name = UART_DEV_2)
{
printf("向串口2号设备发送\n");
write(Uart_DEV2_fd, str, str_lenth);
}
return JZ_ERROR_SYSTEM_MODULE_CODE_SUCCESS;
}
typedef struct {
char* str;
int str_lenth;
int Uart_name;
} UartSendData;
/**********
*
* 发送任务函数
*
* ***********/
static void JZsdk_Uart_UartSend_Task(void *data)
{
UartSendData* taskData = (UartSendData*)data;
if (taskData->Uart_name == UART_4G)
{
printf("向4G设备发送\n");
write(Uart_4G_fd, taskData->str, taskData->str_lenth);
}
else if (taskData->Uart_name == UART_DEV_1)
{
printf("向串口1号设备发送\n");
write(Uart_DEV1_fd, taskData->str, taskData->str_lenth);
}
else if (taskData->Uart_name == UART_DEV_2)
{
printf("向串口2号设备发送\n");
write(Uart_DEV2_fd, taskData->str, taskData->str_lenth);
}
else if (taskData->Uart_name == HAL_DATA_TRANSMISSION)
{
#if APP_VERSION == APP_PSDK
DJI_Low_Data_Trans(taskData->str, taskData->str_lenth);
#endif
}
free(taskData->str);
taskData->str = NULL;
free(taskData);
taskData = NULL;
}
/****************
*
*
* 发送函数
*
* ****************/
T_JZsdkReturnCode JZsdk_Uart_UartSend(int UartPort, unsigned char *send, int num)
{
UartSendData *senddata = (UartSendData*)malloc(sizeof(UartSendData));
if (senddata == NULL) {
// 处理内存分配失败的情况
return JZ_ERROR_SYSTEM_MODULE_CODE_FAILURE;
}
senddata->str = (unsigned char*)malloc(num + 1); // 分配足够的内存用于保存字符串
if (senddata->str == NULL) {
// 处理内存分配失败的情况
free(senddata); // 释放之前分配的内存
senddata = NULL;
return JZ_ERROR_SYSTEM_MODULE_CODE_FAILURE;
}
senddata->str_lenth = num;
senddata->Uart_name = UartPort;
memcpy(senddata->str, send, num);
T_JZsdkReturnCode ret = TaskManagement_SubmitTask(JZsdk_Uart_UartSend_Task, (void *)senddata);
if (ret == JZ_ERROR_SYSTEM_MODULE_CODE_FAILURE)
{
free(senddata->str);
senddata->str = NULL;
free(senddata);
senddata = NULL;
return ret;
}
return JZ_ERROR_SYSTEM_MODULE_CODE_SUCCESS;
}
/****************
*
* 串口识别符关闭
*
* ****************/
static T_JZsdkReturnCode JZsdk_Uart_CloseUartFd(int UartPort)
{
if (UartPort == UART_4G)
{
JZSDK_LOG_INFO("关闭4g串口识别符\n");
close(Uart_4G_fd);
return JZ_ERROR_SYSTEM_MODULE_CODE_SUCCESS;
}
else if (UartPort == UART_DEV_1)
{
JZSDK_LOG_INFO("关闭串口1识别符\n");
close(Uart_DEV1_fd);
return JZ_ERROR_SYSTEM_MODULE_CODE_SUCCESS;
}
else if (UartPort == UART_DEV_2)
{
JZSDK_LOG_INFO("关闭串口2识别符\n");
close(Uart_DEV1_fd);
return JZ_ERROR_SYSTEM_MODULE_CODE_SUCCESS;
}
}
T_JZsdkReturnCode JZsdk_Uart_CloseUartThead(int UartPort)
{
//关闭对应的线程
Deal_Thread = JZ_FLAGCODE_ON; //将处理标志位打开
Recv_Thread = JZ_FLAGCODE_ON; //将存储标志位打开
if (UartPort == UART_4G)
{
JZSDK_LOG_INFO("关闭4g线程\n");
Uart_4G_Switch = JZ_FLAGCODE_OFF;
}
else if (UartPort == UART_DEV_1)
{
JZSDK_LOG_INFO("关闭串口1线程\n");
Uart_DEV1_Switch = JZ_FLAGCODE_OFF;
}
else if (UartPort == UART_DEV_2)
{
JZSDK_LOG_INFO("关闭串口2线程\n");
Uart_DEV2_Switch = JZ_FLAGCODE_OFF;
}
else
{
return JZ_ERROR_SYSTEM_MODULE_CODE_FAILURE;
}
//直到某个串口达成了关闭,这里不能明确到判断哪个串口关闭,但是识别第一个关闭的串口
while ( (Deal_Thread == JZ_FLAGCODE_ON) || (Recv_Thread == JZ_FLAGCODE_ON))
{
delayUs(500);
}
// while (Recv_Thread == JZ_FLAGCODE_ON)
// {
// delayUs(500);
// }
//将串口描述符关闭
JZsdk_Uart_CloseUartFd(UartPort);
//保证全部注销后
JZSDK_LOG_INFO("%s 串口注销完毕", JZsdk_DefineCode_GetPortName(UartPort));
return JZ_ERROR_SYSTEM_MODULE_CODE_SUCCESS;
}